Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Sci Adv ; 8(34): eabn8614, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001671

RESUMEN

Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Animales , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Trasplante Heterólogo
2.
Biomaterials ; 284: 121511, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398587

RESUMEN

The significant advances in nano-drug delivery systems (NDDS) for anticancer agents have led to the development of computational techniques, such as machine learning and neural networks to identify the optimal architectural and compositional design in a wide variety of therapeutic nanoformulations. On the other hand, few studies have examined downsized plug-in reaction-ware embodied in an autonomous platform for the instant reconfigurable production of engineered nanomaterials to guide optimal NDDS designs and delivery strategies. This paper describes an on-demand system for an electrically operable, continuously processible material produced by sequential spray pyrolysis and vibrating spray for single-pass NDDS assembly. In particular, a mild chemotherapeutic NDDS consisting of amorphous boron nitride (a-BN; a stable base material for loading), doxorubicin (DOX; an anticancer drug), and folic acid-chitosan conjugate (FACHI; a targeting and antiopsonic agent), called a-BN-DOX@FACHI, was fabricated using the developed system. a-BN-DOX@FACHI was assessed for the pH-responsive release of DOX, targeting of the folate receptor, and its resistance to opsonization and macrophage phagocytosis. a-BN-DOX@FACHI was found to be a mild cancer chemotherapeutic with reasonable biosafety. Integrating a metal ablation device with the developed on-demand system enabled the reconfiguration of NDDS from a-BN-DOX@FACHI to a-BN-Au-DOX@FACHI or a-BN-Pt-cisplatin@bovine serum albumin to add a photothermal effect with a range of architectures and compositions.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Aerosoles , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas
3.
Colloids Surf B Biointerfaces ; 208: 112093, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34482192

RESUMEN

The transmembrane proteins, CD47 and signal-regulatory protein α are overexpressed in cancer cells and macrophages, respectively, and facilitate the escape of cancer cells from macrophage-mediated phagocytosis. The immunomodulatory and targeting properties of CD47, the chemotherapeutic effects of dabrafenib (D), and the anti-programmed death-1 antibodies (PD-1) pave the way for effective chemoimmunomodulation-mediated anticancer combination therapy. In this study, CD47-conjugated, D-loaded human serum albumin (HSA) nanosystems were fabricated by modified nanoparticle albumin-bound technology. Cis-aconityl-PEG-maleimide (CA), an acid-labile linker, was used to conjugate D@HSA and CD47; the resultant CD47-CA@D@HSA exhibited tumor-specificity through receptor targeting, as well as preferential cleavage and drug release in the acidic tumor microenvironment (pH 5) compared to normal physiological pH conditions (pH 6.5, 7.4). The successful preparation of nanosized (∼220 nm), narrowly dispersed (∼0.13) CD47-CA@D@HSA was proven by physicochemical characterization. In vitro and in vivo internalization, accumulation, cytotoxicity, and apoptosis were observed to be higher with CD47-conjugated nanoconstructs, than with free D or non-targeted nanoconstructs. CD47-CA@D@HSA was found to promote the infiltration of cytotoxic T cells and tumor-associated macrophages into tumors and improve in vivo tumor inhibition. Administration in combination with PD-1 further improved antitumor efficacy by promoting immune responses that blocked the immune checkpoint. No signs of toxicity were seen in mice treated with the nanoconstructs; the formulation was, therefore, thought to be biocompatible and as having potential for clinical use. The targeted chemoimmunomodulation achieved by this combination therapy was found to combat major immunosuppressive facets, making it a viable candidate for use in the treatment of cancer.


Asunto(s)
Antígeno CD47 , Albúmina Sérica Humana , Animales , Imidazoles/farmacología , Ratones , Oximas , Fagocitosis
4.
J Control Release ; 338: 211-223, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34419495

RESUMEN

Despite the significant efforts in developing cancer vaccines, there are still numerous challenges that need to be addressed to ensure their clinical efficacy. Herein, a lymphatic dendritic cell (DC)-targeted artificial nanovaccine mimicking tumor cell membrane (ATM-NV) is developed to boost effector immune response and control immunosuppression simultaneously. The NVs are formulated with lipids, tumor cell membrane proteins, imiquimod (IMQ), and IL-10 siRNA. IL-10 siRNA is incorporated to inhibit the secretion of IL-10, an immunosuppressive cytokine, of maturated DCs upon IMQ. To enhance the DC targeting ability, the nanovaccine surface was non-covalently conjugated with the anti-CD205 antibody. The IMQ and IL-10 siRNA co-loaded, CD205 receptor-targeted artificial tumor membrane NVs (IMQ/siR@ATM-NVs) efficiently migrate to the tumor-draining lymph node and target DCs. Furthermore, immunization with IMQ/siR@ATM-NVs reduces the production of IL-10 and increases Th1-driven antitumor immunity resulted in a great tumor inhibition efficacy. Our results suggest a potential strategy to promote the vaccination's antitumor efficacy by blocking the intrinsic negative regulators in DCs.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Animales , Células Dendríticas , Humanos , Inmunidad , Interleucina-10 , Melanoma/terapia , Ratones , Ratones Endogámicos C57BL
5.
J Control Release ; 336: 274-284, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144106

RESUMEN

Pancreatic islet replacement therapy is an advanced choice for severe cases of type I diabetes. Nevertheless, extensive host immune response toward islet grafts remains a huge challenge for long-term graft function, and a lack of islet donors further increases the difficulties associated with upscaling this therapy. Mounting evidence suggests local delivery of immunosuppressive agents provides a feasible means of enhancing graft-protection. Among many immunosuppressants, tacrolimus (FK506) is one of the most potent interleukin-2 (IL-2)-mediated T-cell proliferation blockers. Here, we reported the effect of locally-delivered FK506-releasing PLGA microspheres (FK506-M) combined with polyethylene glycol (PEG)-based islet surface modification on xenogeneic islet survival in C57BL/6 mouse model. FK506-M was prepared using an emulsion method to a particle size of 10-40 µm and released FK506 over 40 days in vitro. Around 80% of the initial dose of FK506-M stably localized near transplanted islets, as observed under a bioimaging instrument and by immunofluorescence staining of islet grafts. Interestingly, FK506-M at very low-doses (equivalent to 150 to 2400 ng FK506 per recipient) was found to inhibit the infiltration of immune cells into grafts and reduce serum IL-1ß levels, thereby improving graft survival times dose-dependently. The PEGylation of islets alone was not enough to protect islets from early rejection. However, combined treatment with FK506-M additively prolonged xenograft survival. In conclusion, this study describes a safe, effective approach for translating a systemic exposure-free local drug delivery into clinical trials of islet transplantation.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Rechazo de Injerto , Supervivencia de Injerto , Inmunosupresores , Ratones , Ratones Endogámicos C57BL , Microesferas , Polietilenglicoles , Tacrolimus
6.
Int J Pharm ; 605: 120816, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34161810

RESUMEN

Anticancer regimens have been substantially enriched through monoclonal antibodies targeting immune checkpoints, programmed cell death-1/programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4. Inconsistent clinical efficacy after solo immunotherapy may be compensated by nanotechnology-driven combination therapy. We loaded human serum albumin (HSA) nanoparticles with paclitaxel (PTX) via nanoparticle albumin-bound technology and pooled them with anti-PD-L1 monoclonal antibody through a pH-sensitive linker for targeting and immune response activation. Our tests demonstrated satisfactory preparation of paclitaxel-loaded, PD-L1-targeted albumin nanoparticles (PD-L1/PTX@HSA). They had small particle size (~200 nm) and polydispersity index (~0.12) and successfully incorporated each constituent. Relative to normal physiological pH, the formulation exhibited higher drug-release profiles favoring cancer cell-targeted release at low pH. Modifying nanoparticles with programmed cell death-ligand 1 increased cancer cell internalization in vitro and tumor accumulation in vivo in comparison with non-PD-L1-modified nanoparticles. PD-L1/PTX@HSA constructed by nanoparticle albumin-bound technology displayed successful tumor inhibition efficacy both in vitro and in vivo. There was successful effector T-cell infiltration, immunosuppressive programmed cell death-ligand 1, and regulatory T-cell suppression because of cytotoxic T-lymphocyte antigen-4 synergy. Moreover, PD-L1/PTX@HSA had low organ toxicity. Hence, the anti-tumor immune responses of PD-L1/PTX@HSA combined with chemotherapy and cytotoxic T-lymphocyte antigen-4 is a potential anti-tumor strategy for improving quantitative and qualitative clinical efficacy.


Asunto(s)
Nanopartículas , Albúminas , Línea Celular Tumoral , Liberación de Fármacos , Humanos , Inmunoterapia
7.
J Pharm Investig ; 51(4): 361-375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996174

RESUMEN

BACKGROUND: Traditionally, nanoparticles for biomedical applications have been produced via the classical wet chemistry method, with size control remaining a major problem in drug delivery. In recent years, advances in aerosol-based technologies have led to the development of methods that enable the production of nanosized particles and have opened up new opportunities in the field of nano-drug delivery and biomedicine. Aerosol-based technologies have been constantly used to synthesize multifunctional nanoparticles with different properties, which extends their possible biological and medicinal applications. Moreover, aerosol technologies are often more beneficial than other existing approaches because of the major disadvantages of these other techniques. AREA COVERED: This review provides a brief discussion of the existing aerosol-based nanotechnologies and applications of nanoparticles in a variety of diseases. Various types of nanoparticles, such as graphene oxide, Prussian blue, black phosphorous, gold, copper, silver, tellurium, iron oxide, titania, magnesium oxide, and zinc oxide nanoparticles, prepared using aerosol technologies are discussed in this review. The different tactics used for surface modifications are also outlined. The biomedical applications of nanoparticles in chemotherapy, bacterial/fungal/viral treatment, disease diagnosis, and biological assays are also presented in this review. EXPERT OPINION: Aerosol-based technologies can be used to design nanoparticles with the desired functionality. This significantly benefits the nanomedicine field, particularly as product parameters are becoming more encompassing and exacting. One of the biggest issues with conventional methods is their scale-up/scale-down and clinical translation. Aerosol-based nanoparticle synthesis helps enhance control over the product properties and facilitate their use for clinical applications.

8.
Biomaterials ; 269: 120677, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33503557

RESUMEN

Senescent cells drive atherosclerosis at all stages and contribute to cardiovascular disease. However, the markers in these senescent aortic plaques have not been well studied, creating a huge obstacle in the exploration of a precise and efficient system for atherosclerosis treatment. Recently, CD9 has been found to induce cellular senescence and aggravated atherosclerotic plaque formation in apolipoprotein E knockout (ApoE-/-) mice. In the present study, this result has been leveraged to develop CD9 antibody-modified, hyaluronic acid-coated mesoporous silica nanoparticles with a hyaluronidase-responsive drug release profile. In invitro models of senescent foamy macrophages and senescent endothelial cells stimulated with oxidized high-density-lipoprotein, the CD9 antibody-modified mesoporous silica nanoparticles exhibit high cellular uptake; reduce the reactive oxygen species level, high-density lipoprotein oxidation, and production of TNF-α and IL-6; and attenuate the senescence process, contributing to improved cell viability. In vivo experiment demonstrated that these nanoparticles can successfully target the senescent lesion areas, deliver the anti-senescence drug rosuvastatin to the senescent atherosclerotic plaques (mainly endothelial cells and macrophages), and alleviate the progression of atherosclerosis in ApoE-/- mice. By providing deep insight regarding the markers in senescent atherosclerotic plaque and developing a nano-system targeting this lesion area, the study proposes a novel and an accurate therapeutic approach for mitigating atherosclerosis through senescent cell clearance.


Asunto(s)
Aterosclerosis , Células Endoteliales , Macrófagos , Nanopartículas , Placa Aterosclerótica , Animales , Aorta , Aterosclerosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/tratamiento farmacológico , Dióxido de Silicio
9.
ACS Appl Mater Interfaces ; 13(5): 5999-6010, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33506682

RESUMEN

Cellular FLIP (cFLIP) is a crucial player of apoptosis-regulated pathways that is frequently overexpressed in solid cancers. To inhibit c-FLIP, pre- and post-transcriptionally, a multifunctional nanoparticle (NP) was created to deliver cFLIP-specific small interfering RNA (siRNA) into cancer cells. Specifically, Vorinostat (Vor)-loaded mesoporous silica nanoparticles (MSN) were conjugated with polyethylenimine-biotin (PB), followed by electrostatically binding with cFLIP siRNA (Vor/siR@MSN-PB). To stabilize and prolong the circulation time of nanoparticles, a bialdehyde-modified poly(ethylene glycol) (PEG) was cross-linked onto the polyethylenimine (PEI) backbone via the formation of the imine linkage (Schiff base) (Vor/siR@MSN-PB-PEG). The Schiff base is highly stable at physiological pH 7.4 but labile under slightly acidic pH conditions. In the acidic tumor microenvironment (TME), the PEG outer layer could be rapidly cleaved, resulting in the switching of the nanoparticle surface charge to positive, which specifically enhances internalization of the NPs to the biotin-positive tumor cells. Our results demonstrated the successful preparation of Vor/siR@MSN-PB-PEG NPs, in which the siRNA was effectively protected in serum and regulated the expression of cFlip, post-transcriptionally. The presence of the PEG layer resulted in high tumor accumulation and high efficacy in tumor inhibition, which was a result of the efficient cFLIP suppression. Furthermore, in the low-dose regimen of Vorinostat-the pre-transcriptional cFLIP suppressor, treatment with Vor/siR@MSN-PB-PEG NPs was found to be safe with the treated mice, indicating a promising combination regimen for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/antagonistas & inhibidores , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Nanopartículas/química , ARN Interferente Pequeño/farmacología , Vorinostat/farmacología , Animales , Antineoplásicos/química , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Tamaño de la Partícula , Polietilenglicoles/química , ARN Interferente Pequeño/química , Propiedades de Superficie , Vorinostat/química
10.
Nanoscale ; 13(2): 1231-1247, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33406178

RESUMEN

Targeted and stimuli-sensitive nanobombs for the release of therapeutic agents after laser irradiation of the tumor site are gaining widespread attention as personalized anticancer regimens. In this study, redox and photo dual-responsive, folate receptor-targeted nanourchin carriers for chemo-, photodynamic, and photothermal therapy were constructed by the amalgamation of an outer layer of polyethylene glycol (PEG)-S-S-methotrexate (MTX) and an inner core of indocyanine green (ICG)-loaded bismuth sulfide (Bi2S3) nanoparticles for cancer treatment. MTX introduces the carrier to folate receptors resulting in the internalization of nanoparticles into cancer cells, specifically and increasingly. In the reducing environment inside cancer cells, MTX was cleaved, resulting in a burst release that effectively inhibited tumor growth. Simultaneously, the fusion of Bi2S3 and ICG in the inner core absorbed energy from a near-infrared radiation (NIR) laser to generate heat and reactive oxygen species, which further ablated the tumors and synergistically enhanced the anticancer activity of MTX. These results indicate the successful preparation of combined nanourchins (NUs) showing GSH-induced and laser-responsive release of MTX and ICG, accompanied by hyperthermia via Bi2S3 and ICG. Effective in vitro cellular internalization, cellular cytotoxicity, and pro-apoptotic behavior of the nanosystem were achieved through a targeting, redox, and NIR-responsive combination strategy. In vivo biodistribution and photothermal imaging also revealed tumor-selective and -retentive, as well as thermally responsive attributes. Ultimately, this in vivo antitumor study shows an effective tumor ablation by these nanourchins without affecting the vital organs. Our findings indicate that using these targeted redox- and laser-responsive combination therapeutic carriers can be a promising strategy in folate receptor-expressing tumors.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Bismuto , Línea Celular Tumoral , Humanos , Verde de Indocianina , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Sulfuros , Distribución Tisular
11.
J Control Release ; 329: 524-537, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-32971203

RESUMEN

Accumulating clinical data shows that less than half of patients are beneficial from PD-1/PD-L1 blockage therapy owing to the limited infiltration of effector immune cells into the tumor and abundant of the immunosuppressive factors in the tumor microenvironment. In this study, PD-L1 inhibition therapy and BRAF-targeted therapy, which showed clinical benefit, were combined in a CXCR4-targeted nanoparticle co-delivering dabrafenib (Dab), a BRAF inhibitor, and miR-200c which can down-regulate PD-L1 expression. The cationic PCL-PEI core containing Dab- and miR-200c- were coated with poly-L-glutamic acid conjugated with LY2510924, a CXCR-4 antagonist peptide, (PGA-pep) to obtain miR@PCL-PEI/Dab@PGA-pep nanoformulation. The stimulus pH- and redox- reactive of PGA-pep was ascribed to exhibit an enhanced release of drug in the tumor microenvironment as well as improve the stability of miR-200c during the blood circulation. In addition, the presence of LY2510924 peptide would enhance the binding affinity of miR@PCL-PEI/Dab@PGA-pep NPs to cancer cells, leading to improved cellular uptake, cytotoxicity, and in vivo accumulation into tumor area. The in vivo results indicated that both, the immunogenic cell death (ICD) and the inhibition of PD-L1 expression, induced by treatment with CXCR-4 targeted nanoparticles, enables to improve the DC maturation in lymph node and CD8+ T cell activation in the spleen. More importantly, effector T cells were increasingly infiltrated into the tumor, whereas the immunosuppressive factors like PD-L1 expression and regulatory T cells were significantly reduced. They, all together, promote the immune responses against the tumor, indicating the therapeutic efficiency of the current strategy in cancer treatment.


Asunto(s)
MicroARNs , Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Sistema Inmunológico , Microambiente Tumoral
12.
Adv Healthc Mater ; 10(2): e2001157, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33251762

RESUMEN

Recent studies emphasize on developing immune tolerance by an interim administration of various immunosuppressive drugs. In this study, a robust protocol is reported for local immunomodulation using a single-dose of FK506 microspheres and clodronate liposomes (mFK+CLO) in a xenogeneic model of islet transplantation. Surprisingly, the single-dose treatment with mFK+CLO induce tolerance to the islet xenograft. The recipient mice display tolerogenic dendritic cells (tDCs) with decreased antigen presenting ability and T cell activation capacity. Furthermore, a reduced percentage of CD4+ and CD8+ T cells and an impaired differentiation of naïve CD4+ T cells into interferon-γ producing Th1 and interleukin-17 producing Th17 cells are observed. In addition, the immunosuppressive protocol leads to the generation of Foxp3+ regulatory T cells (Tregs) which are required for the long-term graft survival. The enhanced generation of tDCs and Tregs by the single treatment of mFK+CLO cause xenograft tolerance, suggesting a possible clinical strategy which may pave the way towards improving therapeutic outcomes of clinical islet transplantation.


Asunto(s)
Trasplante de Islotes Pancreáticos , Animales , Linfocitos T CD8-positivos , Células Dendríticas , Tolerancia Inmunológica , Ratones , Linfocitos T Reguladores
13.
ACS Appl Mater Interfaces ; 12(51): 56767-56781, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33289550

RESUMEN

The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such systems. Among the different biomembranes, the macrophage membrane has a similar systemic circulation time, with an additional chemotactic aptitude, targeting integrin proteins. In this study, we aimed to establish a laser-activated, disintegrable, and deeply tumor-penetrative nanoplatform. We used a highly tumor-ablative and laser-responsive disintegrable copper sulfide nanoparticle, loaded it with paclitaxel, and camouflaged it with the macrophage membrane for the fabrication of PTX@CuS@MMNPs. The in vitro paclitaxel release profile was favorable for release in the tumor microenvironment, and the release was accelerated after laser exposure. Cellular internalization was improved by membrane encapsulation. Cellular uptake, cytotoxicity, reactive oxygen species generation, and apoptosis induction of PTX@CuS@MMNPs were further improved upon laser exposure, and boosted permeation was achieved by co-administration of the tumor-penetrating peptide iRGD. In vivo tumor accumulation, tumor inhibition rate, and apoptotic marker expression induced by PTX@CuS@MMNPs were significantly improved by laser irradiation and iRGD co-administration. PTX@CuS@MMNPs induced downregulation of cellular proliferation and angiogenic markers but no significant changes in body weight, survival, or significant toxicities in vital organs after laser exposure, suggesting their biocompatibility. The disintegrability of the nanosystem, accredited to biodegradability, favored efficient elimination from the body. In conclusion, PTX@CuS@MMNPs showed promising traits in combination therapies for excellent tumor eradication.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Membrana Celular/química , Macrófagos/química , Nanopartículas del Metal/química , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cobre/química , Cobre/efectos de la radiación , Cobre/toxicidad , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Rayos Infrarrojos , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
14.
Carbohydr Polym ; 249: 116815, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32933663

RESUMEN

Hyaluronic acid (HA) assisted effective internalization into CD44 receptor-overexpressing cancer cells, which could offer an excellent cytotoxic profile and tumor alterations. In this study, duo-photothermal agents (copper sulfide (CuS) and graphene oxide (GO)), chemotherapeutic drug (doxorubicin (DOX)), and targeting moiety (HA) were incorporated into a complexed nanoconstruct for trio-responsive chemo-phototherapy. The nanosystem (CuS(DOX)-GO-HA) was demonstrating its responsive drug release and escalated photothermal behavior. The hyperthermia and photodynamic effect were observed along with efficient ROS generation in the presence of dual photosensitizers. The in vivo biodistribution and photothermal profile reflected a high accumulation and retention of the nanoconstruct in the tumor. Importantly, nanoconstructs effectively inhibit tumor growth based on tumor volume analysis and the altered expression of apoptosis, cell proliferation, and angiogenesis markers. Collectively, these findings suggest that this nanoconstruct has excellent antitumor effects in CD44 overexpressed cells showing the potential for clinical translation in the future.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/terapia , Carcinoma de Células Escamosas/terapia , Doxorrubicina/farmacología , Ácido Hialurónico/administración & dosificación , Nanopartículas/administración & dosificación , Fotoquimioterapia , Animales , Antibióticos Antineoplásicos/química , Apoptosis , Neoplasias de la Mama/patología , Carcinoma de Células Escamosas/patología , Proliferación Celular , Terapia Combinada , Cobre/química , Doxorrubicina/química , Femenino , Grafito/química , Humanos , Ácido Hialurónico/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Hematol Oncol ; 13(1): 123, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928251

RESUMEN

BACKGROUND: Conventional therapeutic approaches for tumor angiogenesis, which are primarily focused on the inhibition of active angiogenesis to starve cancerous cells, target the vascular endothelial growth factor signaling pathway. This aggravates hypoxia within the tumor core and ultimately leads to increased tumor proliferation and metastasis. To overcome this limitation, we developed nanoparticles with antiseptic activity that target tumor vascular abnormalities. METHODS: Ferritin-based protein C nanoparticles (PCNs), known as TFG and TFMG, were generated and tested in Lewis lung carcinoma (LLC) allograft and MMTV-PyMT spontaneous breast cancer models. Immunohistochemical analysis was performed on tumor samples to evaluate the tumor vasculature. Western blot and permeability assays were used to explore the role and mechanism of the antitumor effects of PCNs in vivo. For knocking down proteins of interest, endothelial cells were transfected with siRNAs. Statistical analysis was performed using one-way ANOVA followed by post hoc Dunnett's multiple comparison test. RESULTS: PCNs significantly inhibited hypoxia and increased pericyte coverage, leading to the inhibition of tumor growth and metastasis, while increasing survival in LLC allograft and MMTV-PyMT spontaneous breast cancer models. The coadministration of cisplatin with PCNs induced a synergistic suppression of tumor growth by improving drug delivery as evidenced by increased blood prefusion and decreased vascular permeability. Moreover, PCNs altered the immune cell profiles within the tumor by increasing cytotoxic T cells and M1-like macrophages with antitumor activity. PCNs induced PAR-1/PAR-3 heterodimerization through EPCR occupation and PAR-1 activation, which resulted in Gα13-RhoA-mediated-Tie2 activation and stabilized vascular tight junctions via the Akt-FoxO3a signaling pathway. CONCLUSIONS: Cancer treatment targeting the tumor vasculature by inducing antitumor immune responses and enhancing the delivery of a chemotherapeutic agent with PCNs resulted in tumor regression and may provide an effective therapeutic strategy.


Asunto(s)
Apoferritinas/uso terapéutico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Nanopartículas/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Proteína C/uso terapéutico , Receptor TIE-2/fisiología , Remodelación Vascular/efectos de los fármacos , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos Alquilantes/administración & dosificación , Antineoplásicos Alquilantes/uso terapéutico , Apoferritinas/administración & dosificación , Bevacizumab/uso terapéutico , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/patología , Hipoxia de la Célula/efectos de los fármacos , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Técnicas de Cocultivo , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Células Endoteliales/efectos de los fármacos , Femenino , Masculino , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Neoplasias/fisiología , Pericitos/metabolismo , Proteína C/administración & dosificación , Organismos Libres de Patógenos Específicos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
16.
Acta Biomater ; 115: 371-382, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798721

RESUMEN

The therapeutic efficacy of current cancer vaccines is far from optimal, mainly because of insufficient induction of antigen-specific T cells and because tumor cells can hijack immunosuppressive mechanisms to evade the immune responses. Generating specific, robust, and long-term immune responses against cancer cells and the attenuating of immunosuppressive factors are critical for effective cancer vaccination. Recently, the engineering of exosomes specifically bind to T cells, and then stimulating tumor-specific T-cell immune responses has emerged as a potential alternative strategy for cancer vaccination. In this study, we generated a bifunctional exosome combining the strategy of vaccination and checkpoint blockade. Exosomes prepared from Ovalbumin (OVA)-pulsed, activated dendritic cells were modified with anti-CTLA-4 antibody (EXO-OVA-mAb) to block this inhibitory molecule and to enhance the specificity of the exosomes toward T cells. Our study provides a unique strategy for functionalizing exosome membrane with anti-CTLA-4 antibody via lipid-anchoring method to synergize efficacy of cancer vaccination and immune checkpoint blockade against the tumor. STATEMENT OF SIGNIFICANCE: We designed T-cell-targeting exosomes (EXO-OVA-mAb) decorated with costimulatory molecules, MHCs, antigenic OVA peptide, and anti-CTLA-4 antibody, combining the strategies of vaccines and checkpoint blockade. The exosomes showed enhanced binding to T cells in tumor-draining lymph nodes, effectively induced T-cell activation, and improved the tumor homing of effector T cells, ultimately significantly restraining tumor growth. Thus, EXO-OVA-mAb greatly facilitates T-cell targeting, induces a strong tumor-specific T-cell response, and increased the ratio of effector T cells/regulatory T cells within tumors, resulting in appreciable tumor growth inhibition.


Asunto(s)
Vacunas contra el Cáncer , Exosomas , Animales , Línea Celular Tumoral , Células Dendríticas , Ganglios Linfáticos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL
17.
Pharm Res ; 37(8): 162, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749542

RESUMEN

PURPOSE: The goal of this study was to develop chemotherapeutic drug-loaded photoactivable stealth polymer-coated silica based- mesoporous titania nanoplatforms for enhanced antitumor activity. METHODS: Both in vitro and in vivo models of solvothermal treated photoactivable nanoplatforms were evaluated for efficient chemo-photothermal activity. A versatile nanocomposite that combined silica based- mesoporous titania nanocarriers (S-MTN) with the promising photoactivable agent, graphene oxide (G) modified with a stealth polymer (P) was fabricated to deliver chemotherapeutic agent, imatinib (I), (referred as S-MTN@IG-P) for near-infrared (NIR)-triggered drug delivery and enhanced chemo-photothermal therapy. RESULTS: The fabricated S-MTN@IG-P nanoplatform showed higher drug loading (~20%) and increased drug release (~60%) in response to light in acidic condition (pH 5.0). As prepared nanoplatform significantly converted NIR light into thermal energy (43.2°C) to produce reactive oxygen species (ROS). The pronounced cytotoxic effect was seen in both colon cancer cells (HCT-116 and HT-29) that was mediated through the chemotherapeutic effect of imatinib and the photothermal and ROS generation effects of graphene oxide. In vivo study also showed that S-MTN@IG-P could significantly accumulate into the tumor area and suppress the tumor growth under NIR irradiation without any biocompatibility issues. CONCLUSION: Cumulatively, the above results showed promising effects of S-MTN@IG-P for effective chemo-phototherapy of colon cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Titanio/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Portadores de Fármacos/química , Liberación de Fármacos , Células HCT116 , Células HT29 , Humanos , Mesilato de Imatinib/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Especies Reactivas de Oxígeno , Dióxido de Silicio
18.
ACS Nano ; 14(9): 11040-11054, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32816451

RESUMEN

As well as the exploration of translatable delivery nanosystems for cancer therapeutic agents, the development of automatable continuous-flow manufacturing technology comprising digitally controlled reactions for the on-demand production of pharmaceuticals is an important challenge in anticancer nanomedicine. Most attempts to resolve these issues have involved the development of alternative reactions, formulations, or constructs containing stimulus components aimed at producing multiple approaches for highly efficacious combination cancer therapies. However, there has been no report of a platform based on plug-in execution that enables continuous-flow manufacture in a compact, reconfigurable manner, although an optimal platform technology may be a prerequisite for the timely translation of recently developed nanomedicines. To this end, we describe the development of a platform toward digitizable, continuous manufacture by a serial combination of plug-in reactionwares (heating plates, a spraying cup, and a photochamber) for single-pass flow fabrication. Specifically, we fabricated three different composite nanoblocks consisting of Au1Ag9 (<8 nm; stimulus component), docetaxel (an anticancer drug), and bovine serum albumin (a protective and targeting agent) using our system, with the result of producing nanoblocks with photothermally modulatable and structurally disintegratable properties. These were examined for effectiveness in near-infrared-induced chemothermal cancer therapy and renal excretion of Au1Ag9 particles and exhibited high anticancer efficacy and warrantable biosafety.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico , Fototerapia , Plata/uso terapéutico
19.
Pharm Res ; 37(7): 129, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32548664

RESUMEN

PURPOSE: Development of a nanoplatform constructed by the PEG-dual drug conjugation for co-delivery of paclitaxel (PTX) and Dihydroartemisinin (DHA) to the tumor. METHODS: PEG was conjugated with PTX and DHA to form PTX-PEG-DHA complex as a nanocarrier. The PTX and DHA were co-encapsulated in PTX-PEG-DHA nanoparticles (PD@PPD NPs) by the emulsion evaporation method. The physicochemical properties of PD@PPD Nps were characterized, including size, zeta potential, and morphology. The drug loading capacity and entrapment efficiency, in vitro drug release at different pH conditions were also evaluated. For in vitro assessment, the effects of the NPs on HT-29 colorectal cancer cells, including intracellular uptake, cytotoxicity, and Bcl-2 protein expression were assessed. The in vivo distribution of the NPs was investigated by labelling the NPs with Cyanine 5.5 fluorophore. Finally, the antitumor efficacy of the NPs was evaluated in HT-29 tumor-bearing mice. RESULTS: The nanoparticles were formed at small size (~114 nm) and narrow distribution. The combination of PTX and DHA in the DHA-PEG-PTX nanosystems (PD@PPD) showed remarkably increased apoptosis in colorectal adenocarcinoma HT-29 cells, as compared to free drug treatment. More importantly, the PD@PPD nanoparticles exhibited significantly higher accumulation in the tumor site owing to the enhanced permeability and retention (EPR) effect, effectively restrained the tumor growth in vivo at low-dose of PTX while reducing the systemic toxicity. CONCLUSIONS: The combination of PTX and DHA in a PEG-conjugated dual-drug co-delivery system can minimize the severe side effect associated with the high-dose of PTX while enhancing the antitumor efficacy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/química , Artemisininas/química , Neoplasias Colorrectales/tratamiento farmacológico , Nanocápsulas/química , Paclitaxel/química , Polietilenglicoles/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Permeabilidad de la Membrana Celular , Composición de Medicamentos , Liberación de Fármacos , Colorantes Fluorescentes/química , Regulación de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Óptica , Paclitaxel/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Distribución Tisular
20.
Lab Anim Res ; 36: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32551299

RESUMEN

[This retracts the article DOI: 10.5625/lar.2018.34.2.49.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...