Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34704593

RESUMEN

In response to environmental stress, human cells have been shown to form reversible amyloid aggregates within the nucleus, termed amyloid bodies (A-bodies). These protective physiological structures share many of the biophysical characteristics associated with the pathological amyloids found in Alzheimer's and Parkinson's disease. Here, we show that A-bodies are evolutionarily conserved across the eukaryotic domain, with their detection in Drosophila melanogaster and Saccharomyces cerevisiae marking the first examples of these functional amyloids being induced outside of a cultured cell setting. The conditions triggering amyloidogenesis varied significantly among the species tested, with results indicating that A-body formation is a severe, but sublethal, stress response pathway that is tailored to the environmental norms of an organism. RNA-sequencing analyses demonstrate that the regulatory low-complexity long non-coding RNAs that drive A-body aggregation are both conserved and essential in human, mouse and chicken cells. Thus, the identification of these natural and reversible functional amyloids in a variety of evolutionarily diverse species highlights the physiological significance of this protein conformation, and will be informative in advancing our understanding of both functional and pathological amyloid aggregation events. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Drosophila melanogaster , Animales , Biofisica , Drosophila melanogaster/genética , Ratones
2.
Biol Open ; 10(8)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34296248

RESUMEN

Steroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central hormone regulator of molting and metamorphosis, and plays roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including zipper, which encodes for non-muscle myosin. Canonical ecdysone signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of responsive genes to drive expression. During DC, however, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 transcription factor subunit, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1.


Asunto(s)
Drosophila/embriología , Ecdisterona/metabolismo , Morfogénesis , Transducción de Señal , Animales , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Metamorfosis Biológica , Subunidades de Proteína , Factor de Transcripción AP-1/metabolismo
3.
PLoS One ; 15(3): e0221006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187190

RESUMEN

Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/enzimología , Drosophila melanogaster/fisiología , Músculos/anatomía & histología , Músculos/metabolismo , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Proteínas Quinasas/aislamiento & purificación , Animales , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Ojo/embriología , Larva/metabolismo , Masculino , Músculos/citología , Sistema Nervioso/citología , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Fosforilación , Sinapsis/metabolismo
4.
Biol Open ; 3(12): 1196-206, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25416060

RESUMEN

Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg) and phosphatidylinositol 4,5-bisphosphate (PIP2). Through the use of Proximity Ligation Assay (PLA), we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...