Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respirol Case Rep ; 11(9): e01202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37577412

RESUMEN

Alteplase as a fibrinolytic can be used to break up fibrin to encourage clot breakdown for clinical use. In the pleural space, it is used for symptomatic loculated malignant pleural effusions and pleural infections and can potentially avoid the need for surgical intervention. The optimal dose and dosing regimen of intrapleural fibrinolytics is still unknown. Although generally considered safe, bleeding is a serious potential complication and studies are ongoing to try and determine the lowest effective dose of alteplase to successfully treat pleural infections. This case highlighted the safe use of very low doses of alteplase ranging from 0.25 to 0.5 mg following pleural bleeding after the use of alteplase to treat a patient with symptomatic malignant loculated effusion. It demonstrates once pleural bleeding has stopped, there is a role for carefully titrated intrapleural alteplase use to avoid surgery.

2.
Oncotarget ; 9(54): 30385-30418, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30100996

RESUMEN

Previously, it has been stated that the BCR-ABL fusion-protein is sufficient to induce Chronic Myeloid Leukemia (CML), but additional genomic-changes are required for disease progression. Hence, we profiled control and tyrosine kinase inhibitors (TKI) alone or in combination with other drug-treated CML-samples in different phases, categorized as drug-sensitive and drug-resistant on the basis of BCR-ABL transcripts, the marker of major molecular-response. Molecular-profiling was done using the molecular-inversion probe-based-array, Human Transcriptomics-Array2.0, and Axiom-Biobank genotyping-arrays. At the transcript-level, clusters of control, TKI-resistant and TKI-sensitive cases were correlated with BCR-ABL transcript-levels. Both at the gene- and exon-levels, up-regulation of MPO, TPX2, and TYMS and down-regulation of STAT6, FOS, TGFBR2, and ITK lead up-regulation of the cell-cycle, DNA-replication, DNA-repair pathways and down-regulation of the immune-system, chemokine- and interleukin-signaling, TCR, TGF beta and MAPK signaling pathways. A comparison between TKI-sensitive and TKI-resistant cases revealed up-regulation of LAPTM4B, HLTF, PIEZO2, CFH, CD109, ANGPT1 in CML-resistant cases, leading to up-regulation of autophagy-, protein-ubiquitination-, stem-cell-, complement-, TGFß- and homeostasis-pathways with specific involvement of the Tie2 and Basigin signaling-pathway. Dysregulated pathways were accompanied with low CNVs in CP-new and CP-UT-TKI-sensitive-cases with undetectable BCR-ABL-copies. High CNVs (previously reported gain of 9q34) were observed in BCR-ABL-independent and -dependent TKI, non-sensitive-CP-UT/AP-UT/B-UT and B-new samples. Further, genotyping CML-CP-UT cases with BCR-ABL 0-to-77.02%-copies, the identified, rsID239798 and rsID9475077, were associated with FAM83B, a candidate for therapeutic resistance. The presence of BCR-ABL, additional genetic-events, dysregulated-signaling-pathways and rsIDs associated with FAM83B in TKI-resistant-cases can be used to develop a signature-profile that may help in monitoring therapy.

3.
Antioxid Redox Signal ; 13(7): 1023-32, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20392170

RESUMEN

Sirtuin-1 (SIRT1) is an NAD(+)-dependent protein deacetylase that is sensitive to oxidative signals. Our purpose was to determine whether SIRT1 activity is sensitive to the low molecular weight nitrosothiol, S-nitrosoglutathione (GSNO), which can transduce oxidative signals into physiological responses. SIRT1 formed mixed disulfides with GSNO-Sepharose, and mass spectrometry identified several cysteines that are modified by GSNO, including Cys-67 which was S-glutathiolated. GSNO had no effect on basal SIRT1 deacetylase activity, but inhibited stimulation of activity by resveratrol (RSV) with an IC(50) of 69 microM. These observations indicate that S-glutathiolation of SIRT1 by low concentrations of reactive glutathione can modulate its enzymatic activity.


Asunto(s)
Glutatión/metabolismo , Glutatión/farmacología , S-Nitrosoglutatión/metabolismo , Sirtuina 1/metabolismo , Línea Celular , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Glutatión/química , Humanos , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Compuestos Nitrosos/farmacología , Oxidación-Reducción , Proteínas/metabolismo , Resveratrol , Sirtuina 1/química , Estilbenos/farmacología
4.
Biotechnol Appl Biochem ; 48(Pt 4): 167-78, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17508937

RESUMEN

COX (cytochrome c oxidase) deficiency is one of the main causes of genetic mitochondrial disease and presents with multiple phenotypes, depending on whether the causative mutation exists in a mitochondrial or nuclear gene and on whether it involves an altered catalytic or structural component or an assembly factor for this membrane-embedded 13-subunit enzyme complex. COX deficiency is routinely observed in AD (Alzheimer's disease), although there is continuing debate about whether this is a causative or a secondary consequence of the condition. Altered levels of COX and reduced oxidative phosphorylation capacity have been reported in other common diseases, including cancer, and are seen as unwanted side effects in a number of drug treatments, particularly with antiretroviral and antibiotic treatments. Here, we introduce a simple, rapid, high-throughput 96-well plate protocol that uses a multiplex approach to determine the amount and activity of COX, which should find widespread use in evaluating the above diseases and in drug safety studies. Importantly, the method uses very small amounts of cell material or tissue and does not require the isolation of mitochondria. We show the utility of this approach by example of the analysis of fibroblasts from patients with COX activity deficiency and the effect of the antiretroviral drug ddC (2',3'-dideoxycytidine) on the biogenesis of the enzyme.


Asunto(s)
Complejo IV de Transporte de Electrones/aislamiento & purificación , Complejo IV de Transporte de Electrones/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Bovinos , Extractos Celulares , Bases de Datos de Proteínas , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/química , Fibroblastos/química , Fibroblastos/citología , Humanos , Inmunoprecipitación , Espectrometría de Masas , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Miocardio/metabolismo , Especificidad de Órganos , Subunidades de Proteína/química , Subunidades de Proteína/inmunología , Subunidades de Proteína/aislamiento & purificación , Zalcitabina/toxicidad
5.
Biochim Biophys Acta ; 1762(2): 213-22, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16120479

RESUMEN

The oxidative phosphorylation system (OXPHOS) consists of five multi-enzyme complexes, Complexes I-V, and is a key component of mitochondrial function relating to energy production, oxidative stress, cell signaling and apoptosis. Defects or a reduction in activity in various components that make up the OXPHOS enzymes can cause serious diseases, including neurodegenerative disease and various metabolic disorders. Our goal is to develop techniques that are capable of rapid and in-depth analysis of all five OXPHOS complexes. Here, we describe a mild, micro-scale immunoisolation and mass spectrometric/proteomic method for the characterization of Complex II (succinate dehydrogenase) and Complex III (ubiquinol-cytochrome c reductase) from bovine and rodent heart mitochondria. Extensive protein sequence coverage was obtained after immunocapture, 1D SDS PAGE separation and mass spectrometric analysis for a majority of the 4 and 11 subunits, respectively, that make up Complexes II and III. The identification of several posttranslational modifications, including the covalent FAD modification of flavoprotein subunit 1 from Complex II, was possible due to high mass spectrometric sequence coverage.


Asunto(s)
Complejo III de Transporte de Electrones/aislamiento & purificación , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/enzimología , Proteómica , Succinato Deshidrogenasa/aislamiento & purificación , Succinato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Complejo III de Transporte de Electrones/química , Inmunoprecipitación , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Succinato Deshidrogenasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA