Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCO Precis Oncol ; 8: e2300556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723233

RESUMEN

PURPOSE: Evaluation of PD-L1 tumor proportion score (TPS) by pathologists has been very impactful but is limited by factors such as intraobserver/interobserver bias and intratumor heterogeneity. We developed an artificial intelligence (AI)-powered analyzer to assess TPS for the prediction of immune checkpoint inhibitor (ICI) response in advanced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: The AI analyzer was trained with 393,565 tumor cells annotated by board-certified pathologists for PD-L1 expression in 802 whole-slide images (WSIs) stained by 22C3 pharmDx immunohistochemistry. The clinical performance of the analyzer was validated in an external cohort of 430 WSIs from patients with NSCLC. Three pathologists performed annotations of this external cohort, and their consensus TPS was compared with AI-based TPS. RESULTS: In comparing PD-L1 TPS assessed by AI analyzer and by pathologists, a significant positive correlation was observed (Spearman coefficient = 0.925; P < .001). The concordance of TPS between AI analyzer and pathologists according to TPS ≥50%, 1%-49%, and <1% was 85.7%, 89.3%, and 52.4%, respectively. In median progression-free survival (PFS), AI-based TPS predicted prognosis in the TPS 1%-49% or TPS <1% group better than the pathologist's reading, with the TPS ≥50% group as a reference (hazard ratio [HR], 1.49 [95% CI, 1.19 to 1.86] v HR, 1.36 [95% CI, 1.08 to 1.71] for TPS 1%-49% group, and HR, 2.38 [95% CI, 1.69 to 3.35] v HR, 1.62 [95% CI, 1.23 to 2.13] for TPS <1% group). CONCLUSION: PD-L1 TPS assessed by AI analyzer correlates with that of pathologists, with clinical performance also being comparable when referenced to PFS. The AI model can accurately predict tumor response and PFS of ICI in advanced NSCLC via assessment of PD-L1 TPS.


Asunto(s)
Inteligencia Artificial , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Antígeno B7-H1/análisis , Masculino , Femenino , Anciano , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años
2.
Breast Cancer Res ; 26(1): 31, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395930

RESUMEN

BACKGROUND: Accurate classification of breast cancer molecular subtypes is crucial in determining treatment strategies and predicting clinical outcomes. This classification largely depends on the assessment of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) status. However, variability in interpretation among pathologists pose challenges to the accuracy of this classification. This study evaluates the role of artificial intelligence (AI) in enhancing the consistency of these evaluations. METHODS: AI-powered HER2 and ER/PR analyzers, consisting of cell and tissue models, were developed using 1,259 HER2, 744 ER, and 466 PR-stained immunohistochemistry (IHC) whole-slide images of breast cancer. External validation cohort comprising HER2, ER, and PR IHCs of 201 breast cancer cases were analyzed with these AI-powered analyzers. Three board-certified pathologists independently assessed these cases without AI annotation. Then, cases with differing interpretations between pathologists and the AI analyzer were revisited with AI assistance, focusing on evaluating the influence of AI assistance on the concordance among pathologists during the revised evaluation compared to the initial assessment. RESULTS: Reevaluation was required in 61 (30.3%), 42 (20.9%), and 80 (39.8%) of HER2, in 15 (7.5%), 17 (8.5%), and 11 (5.5%) of ER, and in 26 (12.9%), 24 (11.9%), and 28 (13.9%) of PR evaluations by the pathologists, respectively. Compared to initial interpretations, the assistance of AI led to a notable increase in the agreement among three pathologists on the status of HER2 (from 49.3 to 74.1%, p < 0.001), ER (from 93.0 to 96.5%, p = 0.096), and PR (from 84.6 to 91.5%, p = 0.006). This improvement was especially evident in cases of HER2 2+ and 1+, where the concordance significantly increased from 46.2 to 68.4% and from 26.5 to 70.7%, respectively. Consequently, a refinement in the classification of breast cancer molecular subtypes (from 58.2 to 78.6%, p < 0.001) was achieved with AI assistance. CONCLUSIONS: This study underscores the significant role of AI analyzers in improving pathologists' concordance in the classification of breast cancer molecular subtypes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Inteligencia Artificial , Variaciones Dependientes del Observador , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo
3.
NPJ Breast Cancer ; 9(1): 71, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648694

RESUMEN

Tumor-infiltrating lymphocytes (TILs) have been recognized as key players in the tumor microenvironment of breast cancer, but substantial interobserver variability among pathologists has impeded its utility as a biomarker. We developed a deep learning (DL)-based TIL analyzer to evaluate stromal TILs (sTILs) in breast cancer. Three pathologists evaluated 402 whole slide images of breast cancer and interpreted the sTIL scores. A standalone performance of the DL model was evaluated in the 210 cases (52.2%) exhibiting sTIL score differences of less than 10 percentage points, yielding a concordance correlation coefficient of 0.755 (95% confidence interval [CI], 0.693-0.805) in comparison to the pathologists' scores. For the 226 slides (56.2%) showing a 10 percentage points or greater variance between pathologists and the DL model, revisions were made. The number of discordant cases was reduced to 116 (28.9%) with the DL assistance (p < 0.001). The DL assistance also increased the concordance correlation coefficient of the sTIL score among every two pathologists. In triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients who underwent the neoadjuvant chemotherapy, the DL-assisted revision notably accentuated higher sTIL scores in responders (26.8 ± 19.6 vs. 19.0 ± 16.4, p = 0.003). Furthermore, the DL-assistant revision disclosed the correlation of sTIL-high tumors (sTIL ≥ 50) with the chemotherapeutic response (odd ratio 1.28 [95% confidence interval, 1.01-1.63], p = 0.039). Through enhancing inter-pathologist concordance in sTIL interpretation and predicting neoadjuvant chemotherapy response, here we report the utility of the DL-based tool as a reference for sTIL scoring in breast cancer assessment.

4.
Diagnostics (Basel) ; 12(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292028

RESUMEN

Despite the importance of tumor-infiltrating lymphocytes (TIL) and PD-L1 expression to the immune checkpoint inhibitor (ICI) response, a comprehensive assessment of these biomarkers has not yet been conducted in neuroendocrine neoplasm (NEN). We collected 218 NENs from multiple organs, including 190 low/intermediate-grade NENs and 28 high-grade NENs. TIL distribution was derived from Lunit SCOPE IO, an artificial intelligence (AI)-powered hematoxylin and eosin (H&E) analyzer, as developed from 17,849 whole slide images. The proportion of intra-tumoral TIL-high cases was significantly higher in high-grade NEN (75.0% vs. 46.3%, p = 0.008). The proportion of PD-L1 combined positive score (CPS) ≥ 1 case was higher in high-grade NEN (85.7% vs. 33.2%, p < 0.001). The PD-L1 CPS ≥ 1 group showed higher intra-tumoral, stromal, and combined TIL densities, compared to the CPS < 1 group (7.13 vs. 2.95, p < 0.001; 200.9 vs. 120.5, p < 0.001; 86.7 vs. 56.1, p = 0.004). A significant correlation was observed between TIL density and PD-L1 CPS (r = 0.37, p < 0.001 for intra-tumoral TIL; r = 0.24, p = 0.002 for stromal TIL and combined TIL). AI-powered TIL analysis reveals that intra-tumoral TIL density is significantly higher in high-grade NEN, and PD-L1 CPS has a positive correlation with TIL densities, thus showing its value as predictive biomarkers for ICI response in NEN.

5.
Eur J Cancer ; 170: 17-26, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35576849

RESUMEN

BACKGROUND: Manual evaluation of programmed death ligand 1 (PD-L1) tumour proportion score (TPS) by pathologists is associated with interobserver bias. OBJECTIVE: This study explored the role of artificial intelligence (AI)-powered TPS analyser in minimisation of interobserver variation and enhancement of therapeutic response prediction. METHODS: A prototype model of an AI-powered TPS analyser was developed with a total of 802 non-small cell lung cancer (NSCLC) whole-slide images. Three independent board-certified pathologists labelled PD-L1 TPS in an external cohort of 479 NSCLC slides. For cases of disagreement between each pathologist and the AI model, the pathologists were asked to revise the TPS grade (<1%, 1%-49% and ≥50%) with AI assistance. The concordance rates among the pathologists with or without AI assistance and the effect of the AI-assisted revision on clinical outcome upon immune checkpoint inhibitor (ICI) treatment were evaluated. RESULTS: Without AI assistance, pathologists concordantly classified TPS in 81.4% of the cases. They revised their initial interpretation by using the AI model for the disagreement cases between the pathologist and the AI model (N = 91, 93 and 107 for each pathologist). The overall concordance rate among the pathologists was increased to 90.2% after the AI assistance (P < 0.001). A reduction in hazard ratio for overall survival and progression-free survival upon ICI treatment was identified in the TPS subgroups after the AI-assisted TPS revision. CONCLUSION: The AI-powered TPS analyser assistance improves the pathologists' consensus of reading and prediction of the therapeutic response, raising a possibility of standardised approach for the accurate interpretation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Inteligencia Artificial , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Variaciones Dependientes del Observador
6.
J Clin Oncol ; 40(17): 1916-1928, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35271299

RESUMEN

PURPOSE: Biomarkers on the basis of tumor-infiltrating lymphocytes (TIL) are potentially valuable in predicting the effectiveness of immune checkpoint inhibitors (ICI). However, clinical application remains challenging because of methodologic limitations and laborious process involved in spatial analysis of TIL distribution in whole-slide images (WSI). METHODS: We have developed an artificial intelligence (AI)-powered WSI analyzer of TIL in the tumor microenvironment that can define three immune phenotypes (IPs): inflamed, immune-excluded, and immune-desert. These IPs were correlated with tumor response to ICI and survival in two independent cohorts of patients with advanced non-small-cell lung cancer (NSCLC). RESULTS: Inflamed IP correlated with enrichment in local immune cytolytic activity, higher response rate, and prolonged progression-free survival compared with patients with immune-excluded or immune-desert phenotypes. At the WSI level, there was significant positive correlation between tumor proportion score (TPS) as determined by the AI model and control TPS analyzed by pathologists (P < .001). Overall, 44.0% of tumors were inflamed, 37.1% were immune-excluded, and 18.9% were immune-desert. Incidence of inflamed IP in patients with programmed death ligand-1 TPS at < 1%, 1%-49%, and ≥ 50% was 31.7%, 42.5%, and 56.8%, respectively. Median progression-free survival and overall survival were, respectively, 4.1 months and 24.8 months with inflamed IP, 2.2 months and 14.0 months with immune-excluded IP, and 2.4 months and 10.6 months with immune-desert IP. CONCLUSION: The AI-powered spatial analysis of TIL correlated with tumor response and progression-free survival of ICI in advanced NSCLC. This is potentially a supplementary biomarker to TPS as determined by a pathologist.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inteligencia Artificial , Antígeno B7-H1 , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor , Análisis Espacial , Microambiente Tumoral
7.
Chirality ; 22 Suppl 1: E186-201, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21038390

RESUMEN

Despite that a number of experimental and theoretical investigations have been carried out to determine the structure of trialanine in water, the reported populations of polyproline II (PPII) and ß-strand conformers vary and were found to be dependent on which spectroscopic method was used. Such discrepancies are due to limitations of different spectroscopic methods used. Here, the temperature- and pH-dependent circular dichroism (CD) and NMR experiments have been carried out to develop a self-consistent singular value decomposition procedure. The temperature-dependent CD spectra indicate the presence of two conformers, but due to the two peptide bonds in a trialanine, one should take into consideration of four different conformers to fully interpret the NMR results. From the pH-dependent NMR coupling constant measurements, the conformation of zwitterionic trialanine is little different from that of cationic one. The strong pH dependency of CD spectrum is likely due to charge transfer transitions between carboxylate and nearby peptide groups or internal field effects not to pH-dependent conformational change. To simultaneously analyze the temperature-dependent CD and NMR data, a self-consistent procedure was used to newly determine the reference NMR coupling constants required to estimate one of the peptide dihedral angles. From the estimated enthalpy and entropy changes associated with the transition from enthalpically favorable PPII conformer to entropically favorable ß-strand conformer, the relative populations of the four possible conformers of trialanine were determined and compared with the previous experimental findings. We anticipate that the present experimental results and interpretation procedure would be of use in determining the solution structures of small oligopeptides in the future.


Asunto(s)
Oligopéptidos/química , Péptidos/química , Agua/química , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
J Phys Chem B ; 114(40): 13021-9, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20849143

RESUMEN

To study the azido gauche effect on the backbone conformation of ß-azidoalanine (Aza) dipeptide (AAD, Ac-Aza-NHMe) and tripeptide (AAT, Ac-Aza-Aza-NH(2)), we used spectroscopic methods in combination with quantum chemistry calculations and molecular dynamics (MD) simulations. From the (1)H NMR coupling constants and (1)H,(1)H NOESY experimental data, we found that AAD in water mainly adopts a seven-membered cyclic (C(7)) rather than polyproline II (P(II)) backbone conformation and prefers the gauche- (g(-)) side-chain conformer. From the amide I IR absorption and circular dichroism (CD) spectra, the backbone conformation of AAD in water is found to deviate from P(II) but is rather close to C(7). Thus, the backbone conformation of AAD differs from that of alanine dipeptide (AD, Ac-Ala-NHMe), which is mainly P(II) in water. The underlying origin of the backbone conformational difference between AAD and AD in water was elucidated by quantum chemistry calculations with density functional theory (DFT). It was found that the C(7)/g(-) conformer is the lowest energy structure of an isolated AAD. Here, the ß-azido group forms intramolecular electrostatic interactions with two neighboring peptide bonds, which are facilitated by the azido gauche effect. Thus, the ß-azido group appears to be responsible for directing the peptide backbone conformation toward the C(7) structure. The quantum mechanical/molecular mechanical (QM/MM) MD simulations show that AAD in water adopts neither P(II) nor right-handed α-helix (α(R)) and prefers the g(-) conformer. Thus, the intramolecular electrostatic interactions between the ß-azido group and two nearby peptide bonds are also found even in the aqueous solution structure of AAD. Consequently, the ß-azido group appears to be an effective C(7)-conformation-directing element, which may also be useful for tuning the structures of other amino acids and polypeptides.


Asunto(s)
Alanina/análogos & derivados , Azidas/química , Péptidos/química , Alanina/química , Dicroismo Circular , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Teoría Cuántica , Espectrofotometría Infrarroja , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...