Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(42): e2303655, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433455

RESUMEN

Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.


Asunto(s)
G-Cuádruplex , Canales Iónicos , Canales Iónicos/metabolismo , Transporte Biológico , Cationes/química , Fenómenos Fisiológicos Celulares , Potasio
2.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326128

RESUMEN

The present study aimed to investigate the effects of chitosan (CS)-tripolyphosphate (TPP) nanoparticles (NPs) on the stability, antioxidant activity, and bioavailability of astaxanthin (ASX). ASX-loaded CS-TPP NPs (ACT-NPs) prepared by ionic gelation between CS (0.571 mg/mL) and TPP (0.571 mg/mL) showed 505.2 ± 184.8 nm, 20.4 ± 1.2 mV, 0.348 ± 0.044, and 63.9 ± 3.0% of particle size, zeta potential, polydispersity index and encapsulation efficiency, respectively. An in vitro release study confirmed that the release of ASX in simulated gastric (pH 1.2) and intestinal (pH 6.8) fluid was prolonged within ACT-NPs. The in vitro antioxidant activities of ACT-NPs were significantly improved compared with free ASX (FA) (p < 0.05). Furthermore, the cellular and in vivo antioxidant analysis verified that ACT-NPs could enhance the cytoprotective effects on the BHK-21 cell line and demonstrate sustained release properties, leading to prolonged residence time in the rat plasma. The results suggest that the stability, antioxidant properties, and bioavailability of ASX can be effectively enhanced through encapsulation within CS-TPP NPs.

3.
ACS Omega ; 6(51): 35297-35306, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984261

RESUMEN

The importance of chitosan has been strongly emphasized in literature because this natural polymer could not only remove heavy metal ions in water but also have the potential for recyclability. However, reversible phase transition and its dynamics, which are highlighting areas of a recycle process, have not been studied sufficiently. Here, we present dynamic studies of the dissolution as well as the gelation of a physically crosslinked chitosan hydrogel. Specifically, a one-dimensional gel growth system and an acetate buffer solution were prepared for the precise analysis of the dominant factors affecting a phase transition. The dissolution rate was found to be regulated by three major factors of the pH level, Cu2+, and NO2 -, while the gelation rate was strongly governed by the concentration of OH-. Apart from the gelation rate, the use of Cu2+ led to the rapid realization of gel characteristics. The results here provide strategies for process engineering, ultimately to determine the phase-transition rates. In addition, a microfluidic switch was successfully operated based on a better understanding of the reversible crosslinking of the chitosan hydrogel. Rapid gelation was required to close the channel, and a quick switchover was achieved by a dissolution enhancement strategy. As a result, factors that regulated the rates of gelation or dissolution were found to be useful to operate the fluidic switch.

4.
Sci Robot ; 5(44)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022609

RESUMEN

Spiders use adhesive, stretchable, and translucent webs to capture their prey. However, sustaining the capturing capability of these webs can be challenging because the webs inevitably invite contamination, thus reducing its adhesion force. To overcome these challenges, spiders have developed strategies of using webs to sense prey and clean contaminants. Here, we emulate the capturing strategies of a spider with a single pair of ionic threads based on electrostatics. Our ionic spiderwebs completed consecutive missions of cleaning contamination on itself, sensing approaching targets, capturing those targets, and releasing them. The ionic spiderwebs demonstrate the importance of learning from nature and push the boundaries of soft robotics in an attempt to combine mutually complementary functions into a single unit with a simple structure.


Asunto(s)
Robótica/instrumentación , Arañas/fisiología , Adhesividad , Animales , Materiales Biomiméticos , Biomimética/instrumentación , Diseño de Equipo , Hidrogeles , Iones , Modelos Biológicos , Conducta Predatoria/fisiología , Seda/química , Electricidad Estática , Vibración
5.
Materials (Basel) ; 12(22)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766213

RESUMEN

Twisted bi-layer graphene (tBLG) has attracted much attention because of its unique band structure and properties. The properties of tBLG vary with small differences in the interlayer twist angle, but it is difficult to accurately adjust the interlayer twist angle of tBLG with the conventional fabrication method. In this study, we introduce a facile tBLG fabrication method that directly picks up a single-crystalline graphene layer from a growth substrate and places it on another graphene layer with a pre-designed twist angle. Using this approach, we stacked single-crystalline graphene layers with controlled twist angles and thus fabricated tBLG and twisted multi-layer graphene (tMLG). The structural, optical and electrical properties depending on the twist angle and number of layers, were investigated using transmission electron microscopy (TEM), micro-Raman spectroscopy, and gate-dependent sheet resistance measurements. The obtained results show that the pick and place approach enables the direct dry transfer of the top graphene layer on the as-grown graphene to fabricate uniform tBLG and tMLG with minimal interlayer contamination and pre-defined twist angles.

6.
Proc Natl Acad Sci U S A ; 116(28): 13807-13815, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221759

RESUMEN

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA