Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132564, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782324

RESUMEN

Recently, the incidence of Achilles tendon ruptures (ATRs) has become more common, and repair surgery using a bioabsorbable suture is generally preferred, particularly in the case of healthy patients. Sutures composed of poly(lactic-co-glycolic acid) (PLGA) are commonly used in ATR surgeries. Nevertheless, owing to the inherent limitations of PLGA, novel bioabsorbable sutures that can accelerate Achilles tendon healing are sought. Recently, several studies have demonstrated the beneficial effects of atelocollagen on tendon healing. In this study, poly(3,4-dihydroxy-L-phenylalanine) (pDOPA), a hydrophilic biomimetic material, was used to modify the hydrophobic surface of a PLGA suture (Vicryl, VC) for the stable coating of atelocollagen on its surface. The main objective was to fabricate an atelocollagen-coated VC suture and evaluate its performance in the healing of Achilles tendon using a rat model of open repair for ATR. Structural analyses of the surface-modified suture indicated that the collagen was successfully coated on the VC/pDOPA suture. Postoperative in vivo biomechanical analysis, histological evaluation, ultrastructural/morphological analyses, and western blotting confirmed that the tendons in the VC/pDOPA/Col group exhibit superior healing than those in the VC and VC/pDOPA groups after 1 and 6 weeks following the surgery. The this study suggests that atelocollagen-coated PLGA/pDOPA sutures are preferable for future medical applications, especially in the repair of ATR.

2.
Orthop J Sports Med ; 11(10): 23259671231200933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37868218

RESUMEN

Background: There is growing interest in nonoperative treatment for the management of Achilles tendon ruptures (ATRs). However, nonoperative treatment is limited by the risk of tendon reruptures and low satisfaction rates. Recently, atelocollagen injections have been reported to have beneficial effects on tendon healing. Purpose: To evaluate the beneficial effects of injected atelocollagen on Achilles tendon healing and investigate the mechanism of atelocollagen on tendon healing. Study Design: Controlled laboratory study. Methods: Percutaneous tenotomy of the right Achilles tendon in 66 rats was performed. The animals were equally divided into the noninjection group (NG) and the collagen injection group (CG). At 1, 3, and 6 weeks, the Achilles functional index, cross-sectional area, load to failure, stiffness, stress, and the modified Bonar score were assessed. Transmission electron microscopy, western blotting, and immunohistochemistry were also performed. Results: The Achilles functional index (-6.8 vs -43.0, respectively; P = .040), load to failure (42.1 vs 27.0 N, respectively; P = .049), and stiffness (18.8 vs 10.3 N/mm, respectively; P = .049) were higher in the CG than those in the NG at 3 weeks. There were no significant differences in histological scores between the 2 groups. Transmission electron microscopy analysis showed that the mean diameter of collagen fibrils in the CG was greater than that in the NG at 3 weeks (117.2 vs 72.6 nm, respectively; P < .001) and 6 weeks (202.1 vs 144.0 nm, respectively; P < .001). Western blot analysis showed that the expression of collagen type I in the CG was higher than that in the NG at 1 week (P = .005) and 6 weeks (P = .001). Conclusion: An atelocollagen injection had beneficial effects on the healing of nonoperatively treated Achilles tendon injuries. The Achilles tendon of CG rats exhibited better functional, biomechanical, and morphological outcomes compared with NG rats. The molecular data indicated that the mechanism of atelocollagen injections may be associated with an increased amount of collagen type I. Clinical Relevance: An atelocollagen injection might be a good adjuvant option for the nonoperative treatment of ATRs.

3.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897746

RESUMEN

Exposure to particulate matter (PM) has been linked with the severity of various diseases. To date, there is no study on the relationship between PM exposure and tendon healing. Open Achilles tenotomy of 20 rats was performed. The animals were divided into two groups according to exposure to PM: a PM group and a non-PM group. After 6 weeks of PM exposure, the harvest and investigations of lungs, blood samples, and Achilles tendons were performed. Compared to the non-PM group, the white blood cell count and tumor necrosis factor-alpha expression in the PM group were significantly higher. The Achilles tendons in PM group showed significantly increased inflammatory outcomes. A TEM analysis showed reduced collagen fibrils in the PM group. A biomechanical analysis demonstrated that the load to failure value was lower in the PM group. An upregulation of the gene encoding cyclic AMP response element-binding protein (CREB) was detected in the PM group by an integrated analysis of DNA methylation and RNA sequencing data, as confirmed via a Western blot analysis showing significantly elevated levels of phosphorylated CREB. In summary, PM exposure caused a deleterious effect on tendon healing. The molecular data indicate that the action mechanism of PM may be associated with upregulated CREB signaling.


Asunto(s)
Tendón Calcáneo , Material Particulado , Tendón Calcáneo/metabolismo , Animales , Fenómenos Biomecánicos , Metilación de ADN , Material Particulado/toxicidad , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...