Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37512607

RESUMEN

This paper proposes a FMCW radar transceiver with photonic elements. The proposed radar system is efficiently designed by budget analysis, and a wideband signal is generated using photonic elements. To verify the performance of the proposed radar system, field tests including changes in bandwidth are conducted. The results confirm that the resolution of ISAR images improves as the bandwidth increases as expected through the budget analysis.

2.
Exp Comput Multiph Flow ; 5(3): 304-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36788805

RESUMEN

Commuter buses have a high passenger density relative to the interior cabin volume, and it is difficult to maintain a physical/social distance in terms of airborne transmission control. Therefore, it is important to quantitatively investigate the impact of ventilation and air-conditioning in the cabin on the airborne transmission risk for passengers. In this study, comprehensive coupled numerical simulations using computational fluid and particle dynamics (CFPD) and computer-simulated persons (CSPs) were performed to investigate the heterogeneous spatial distribution of the airborne transmission risk in a commuter bus environment under two types of layouts of the ventilation system and two types of passenger densities. Through a series of particle transmission analysis and infection risk assessment in this study, it was revealed that the layout of the supply inlet/exhaust outlet openings of a heating, ventilation, and air-conditioning (HVAC) system has a significant impact on the particle dispersion characteristics inside the bus cabin, and higher infection risks were observed near the single exhaust outlet in the case of higher passenger density. The integrated analysis of CFPD and CSPs in a commuter bus cabin revealed that the airborne transmission risk formed significant heterogeneous spatial distributions, and the changes in air-conditioning conditions had a certain impact on the risk.

3.
Respir Physiol Neurobiol ; 285: 103587, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212243

RESUMEN

The present numerical study investigated the transportation time of the inhaled chemicals in three realistic human airway models by adopting a methodology from the field of the building ventilation. Two indexes including "scale of ventilation efficiency 3 (SVE3)" and "local purging flow rate (L-PFR)" were used to evaluate the respective arrival time and staying time under different inhalation flow rates. The general trend of the SVE3 was predicted as expected and the exceptions within the nasal cavities were attributed to the uneven allocation of the inhaled flow between the internal channels and the formation of the vortex circulation therein. The complicated situation of the L-PFR was also explained by the structure constrains. Moreover, the variation of the two indexes with the flow rate was sensitive to the inter-subjective differences but the distribution pattern was not changed significantly. By combining the SVE3 and L-PFR, it could help with assessing the potential effect of the inhaled chemicals on the human health for engineering applications to which the relative impacts are more interested than the absolute value. But for the precise evaluation regarding a specific chemical, comprehensive simulation is still necessary with the surface adsorption included under realistic respiration cycles.


Asunto(s)
Contaminantes Atmosféricos , Inhalación/fisiología , Laringe , Modelos Teóricos , Cavidad Nasal , Faringe , Tráquea , Humanos
4.
Environ Pollut ; 252(Pt B): 1388-1398, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254896

RESUMEN

Industry implies economic growth; however, outdoor and indoor air pollution generated by industrial activities represents a widespread problem for the environment and human beings. In terms of human health, indoor air quality assessment has become essential in a society where people spend most of their time in indoor dwellings, as in the case of industry workers. Because indoor air quality is strongly affected by the outdoor environment, especially under natural ventilation conditions (e.g., cross-ventilation), a comprehensive analysis that includes outdoor atmospheric-urban environment is needed to reproduce realistic scenarios. In this context, computational fluid dynamics (CFD) is a useful tool. To perform a precise analysis of the inhalation exposure of factory workers to potential gas-phase contaminants in the working environment (i.e., inhaled dose of contaminants and potential effects), the human body and respiratory tract need to be integrated in the analysis. Therefore, in this study, we performed an integrated occupational inhalation exposure/toxicology assessment in a factory building that applies a computer simulated person (CSP), a virtual human respiratory tract and integrated physiologically-based toxicokinetic (PBTK) model to predict tissue dosimetry distribution. Outdoor airflow variation was transported into the enclosure through an hourly change in wind pressure coefficient to calculate transient ventilation rate and indoor contaminant concentration between 08:00 and 17:00 h. Thereafter, the time-averaged contaminant concentration calculated at the nares of the human body was employed in a steady state calculation of airflow and contaminant distribution inside the virtual respiratory tract. Subsequently, we predicted adsorbed contaminant in the first layer of tissue of the human airways; highest adsorption took place in the nasal cavity. Finally, based on the results of the comprehensive coupled numerical analysis performed using the CFD-CSP-PBTK model, we quantitatively discussed differences between the inhalation exposure concentration and representative contaminant concentration in the factory space (e.g., time and volume-averaged concentration).


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Sistema Respiratorio/efectos de los fármacos , Ventilación/métodos , Simulación por Computador , Humanos , Hidrodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...