Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004616

RESUMEN

In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.

2.
Nutrients ; 15(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764844

RESUMEN

In natural products, the content and quality of the marker components differ depending on the part, production area, collection period, and extraction method; therefore, a standardized analysis method is required to obtain consistent results. This study developed a simultaneous analysis method for three marker components (7-methoxylutolin-5-O-glucoseide, pilloin 5-O-ß-d-glucopyranoside, rutarensin) isolated and purified from Wikstroemia ganpi (W. ganpi). Simultaneous analysis was performed using high-performance liquid chromatography with photodiode array detection (HPLC-PDA) method that was validated according to the International Council for Harmonisation (ICH) guidelines. The developed analytical method exhibited linearity (r2 > 0.999), detection limits (0.72-3.34 µg/mL), and quantification limits (2.19-10.22 µg/mL). The relative standard deviation (RSD) value of intra- and inter-day precisions was less than 1.68%, and analyte recoveries (93.42-117.55%; RSD < 1.86%) were validated according to the analytical procedures, and all parameters were within the allowable range. Quantitative analysis of the three marker components from W. ganpi MeOH extract (WGM) showed 7-methoxylutolin-5-O-glucoseide with the highest content (51.81 mg/g). The inhibitory effects of WGM on cytochrome P450 (CYP) substrate drugs were further investigated. The in vitro study revealed that WGM inhibited the CYP3A-mediated metabolism of buspirone and that 7-methoxylutolin-5-O-glucoseide and pilloin 5-O-ß-d-glucopyranoside inhibited the metabolism of buspirone with IC50 values of 2.73 and 18.7 µM, respectively. However, a single oral dose of WGM did not have significant effects on the pharmacokinetics of buspirone in rats, suggesting that WGM cannot function as an inhibitor of CYP3A-mediated metabolism in vivo.


Asunto(s)
Wikstroemia , Animales , Ratas , Cromatografía Líquida de Alta Presión , Buspirona , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450
3.
Bioeng Transl Med ; 8(3): e10527, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206214

RESUMEN

The gut microbiome is closely linked to gastrointestinal health and disease status. Oral administration of known probiotic strains is now considered a promising therapeutic strategy, especially for refractory diseases such as inflammatory bowel disease. In this study, we developed a nanostructured hydroxyapatite/alginate (HAp/Alg) composite hydrogel that protects its encapsulated probiotic Lactobacillus rhamnosus GG (LGG) by neutralizing hydrogen ions that penetrate the hydrogel in a stomach without inhibiting LGG release in an intestine. Surface and transection analyses of the hydrogel revealed characteristic patterns of crystallization and composite-layer formation. TEM revealed the dispersal of the nanosized HAp crystals and encapsulated LGG in the Alg hydrogel networks. The HAp/Alg composite hydrogel maintained its internal microenvironmental pH, thereby enabling the LGG to survive for substantially longer. At intestinal pH, the encapsulated LGG was completely released upon disintegration of the composite hydrogel. In a dextran sulfate sodium-induced colitis mouse model, we then assessed the therapeutic effect of the LGG-encapsulating hydrogel. This achieved intestinal delivery of LGG with minimal loss of enzymatic function and viability, ameliorating colitis by reducing epithelial damage, submucosal edema, inflammatory cell infiltration, and the number of goblet cells. These findings reveal the HAp/Alg composite hydrogel as a promising intestinal-delivery platform for live microorganisms including probiotics and live biotherapeutic products.

4.
Biomed Pharmacother ; 162: 114589, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004327

RESUMEN

Echinochrome A, a natural naphthoquinone pigment found in sea urchins, is increasingly being investigated for its nutritional and therapeutic value associated with antioxidant, anticancer, antiviral, antidiabetic, and cardioprotective activities. Although several studies have demonstrated the biological effects and therapeutic potential of echinochrome A, little is known regarding its biopharmaceutical behaviors. Here, we aimed to investigate the physicochemical properties and metabolic profiles of echinochrome A and establish a physiologically-based pharmacokinetic (PBPK) model as a useful tool to support its clinical applications. We found that the lipophilicity, color variability, ultraviolet/visible spectrometry, and stability of echinochrome A were markedly affected by pH conditions. Moreover, metabolic and pharmacokinetic profiling studies demonstrated that echinochrome A is eliminated primarily by hepatic metabolism and that four possible metabolites, i.e., two glucuronidated and two methylated conjugates, are formed in rat and human liver preparations. A whole-body PBPK model incorporating the newly identified hepatic phase II metabolic process was constructed and optimized with respect to chemical-specific parameters. Furthermore, model simulations suggested that echinochrome A could exhibit linear disposition profiles without systemic and local tissue accumulation in clinical settings. Our proposed PBPK model of echinochrome A could be a valuable tool for predicting drug interactions in previously unexplored scenarios and for optimizing dosage regimens and drug formulations.


Asunto(s)
Naftoquinonas , Humanos , Ratas , Animales , Naftoquinonas/uso terapéutico , Antioxidantes , Interacciones Farmacológicas , Erizos de Mar/metabolismo , Modelos Biológicos
5.
Drug Dev Res ; 84(3): 579-591, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811607

RESUMEN

Alizarin (1,2-dihydroxyanthraquinone) is an anthraquinone reddish dye widely used for painting and textile dyeing. As the biological activity of alizarin has recently attracted increasing attention from researchers, its therapeutic potential as complementary and alternative medicine is of interest. However, no systematic research has been conducted on the biopharmaceutical and pharmacokinetic aspects of alizarin. Therefore, this study aimed to comprehensively investigate the oral absorption and intestinal/hepatic metabolism of alizarin using a simple and sensitive tandem mass spectrometry method developed and validated in-house. The present method for the bioanalysis of alizarin has merits, including a simple pretreatment procedure, small sample volume, and adequate sensitivity. Alizarin exhibited pH-dependent moderate lipophilicity and low solubility with limited intestinal luminal stability. Based on the in vivo pharmacokinetic data, the hepatic extraction ratio of alizarin was estimated to be 0.165-0.264, classified as a low level of hepatic extraction. In an in situ loop study, considerable fractions (28.2%-56.4%) of the alizarin dose were significantly absorbed in gut segments from the duodenum to ileum, suggesting that alizarin may be classified as the Biopharmaceutical Classification System class II. An in vitro metabolism study using rat and human hepatic S9 fractions revealed that glucuronidation and sulfation, but not NADPH-mediated phase I reactions and methylation, are significantly involved in the hepatic metabolism of alizarin. Taken together, it can be estimated that the fractions of oral alizarin dose unabsorbed from the gut lumen and eliminated by the gut and liver before reaching the systemic circulation are 43.6%-76.7%, 0.474%-36.3%, and 3.77%-5.31% of the dose, respectively, resulting in a low oral bioavailability of 16.8%. Therefore, the oral bioavailability of alizarin depends primarily on its chemical degradation in the gut lumen and secondarily on first-pass metabolism.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Ratas , Humanos , Animales , Disponibilidad Biológica , Cromatografía Liquida , Ratas Sprague-Dawley , Antraquinonas , Administración Oral
6.
Int J Pharm ; 630: 122443, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36503847

RESUMEN

5-Fluorouracil (5-FU) is a widely used chemotherapeutic agent for colorectal cancer (CRC) owing to its potent anticancer effects. However, severe systemic side effects and poor drug accumulation in the CRC tissues limit its efficacy. This study aimed to develop 5-FU crystal-incorporated, pH-responsive, and release-modulating poly(d,l-lactide-co-glycolide)/Eudragit FS hybrid microparticles (5FU-EPMPs) for the local CRC-targeted chemotherapy. Approximately 150 µm 5FU-EPMPs were fabricated via the S/O/W emulsion solvent evaporation method, with 7.93 ± 0.24% and 87.23 ± 2.64% 5-FU loading and encapsulation efficiencies, respectively. Drug release profiles in a simulated pH environment of the gastrointestinal tract revealed that premature 5-FU release in the stomach and small intestine was prevented, thereby minimizing systemic 5-FU absorption. After reaching the colon, 5-FU was continuously released for >15 h, allowing long-term exposure of CRC tissues to sufficient 5-FU concentrations. Furthermore, in a CRC mouse model, the 5FU-EPMPs showed potent inhibition of tumor growth without signs of systemic toxicity. Thus, the 5FU-EPMPs represent a promising drug delivery system for local CRC-targeted chemotherapy.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Ratones , Animales , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Neoplasias Colorrectales/tratamiento farmacológico
7.
J Pineal Res ; 74(1): e12835, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214640

RESUMEN

N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.


Asunto(s)
Colitis , Melatonina , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Hemo-Oxigenasa 1/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Antiinflamatorios/uso terapéutico
8.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557850

RESUMEN

Leuprolide is a synthetic nonapeptide drug (pyroGlu-His-Trp-Ser-Tyr-d-Leu-Leu-Arg-Pro-NHEt) that acts as a gonadotropin-releasing hormone agonist. The continuous administration of therapeutic doses of leuprolide inhibits gonadotropin secretion, which is used in androgen-deprivation therapy for the treatment of advanced prostate cancer, central precocious puberty, endometriosis, uterine fibroids, and other sex-hormone-related conditions. To improve the pharmacokinetic properties of peptide drugs, a fatty acid was conjugated with leuprolide for long-term action. In this study, we developed a simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of leuprolide and leuprolide-oleic acid conjugate (LOC) levels. The developed method was validated in terms of linearity, precision, accuracy, recovery, matrix effect, and stability according to the US Food and Drug Administration guidelines, and the parameters were within acceptable limits. Subsequently, the pharmacokinetics of leuprolide and LOCs were evaluated. In vivo rat subcutaneous studies revealed that conjugation with fatty acids significantly altered the pharmacokinetics of leuprolide. After the subcutaneous administration of fatty-acid-conjugated leuprolide, the mean absorption time and half-life were prolonged. To the best of our knowledge, this is the first study showing the effects of fatty acid conjugates on the pharmacokinetics of leuprolide using a newly developed UPLC-MS/MS method for the simultaneous quantification of leuprolide and LOCs.


Asunto(s)
Leuprolida , Neoplasias de la Próstata , Masculino , Humanos , Femenino , Ratas , Animales , Cromatografía Liquida/métodos , Leuprolida/farmacocinética , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos , Antagonistas de Andrógenos , Cromatografía Líquida de Alta Presión
9.
Pharm Biol ; 60(1): 2266-2275, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36412560

RESUMEN

CONTEXT: Zeaxanthin is a yellow­coloured dietary carotenoid widely recognized as an essential component of the macula. It exerts blue light filtering and antioxidant activities, offering eye health and vision benefits. OBJECTIVE: This study explores the oral absorption and systemic disposition of zeaxanthin from biopharmaceutical and pharmacokinetic perspectives. MATERIALS AND METHODS: In vivo intravenous (5 and 10 mg/kg) and intraportal (5 mg/kg) pharmacokinetic studies were performed to determine intrinsic tissue­blood partition coefficient, elimination pathway, and hepatic clearance, of zeaxanthin in rats. Moreover, in vitro physicochemical property test, in situ closed loop study, in vivo oral pharmacokinetic study (20 and 100 mg/kg), and in vivo lymphatic absorption study (100 mg/kg) were conducted to investigate the gut absorption properties of zeaxanthin and assess the effects of several lipids on the lymphatic absorption of zeaxanthin in rats. RESULTS: Zeaxanthin exhibited poor solubility (≤144 ng/mL) and stability (6.0-76.9% of the initial amount remained at 24 h) in simulated gut luminal fluids. Gut absorption of zeaxanthin occurred primarily in the duodenum, but the major fraction (≥84.7%) of the dose remained unabsorbed across the entire gut tract. Considerable fractions of intravenous zeaxanthin accumulated in the liver, lung, and spleen (21.3, 11.7, and 2.0%, respectively). It was found that the liver is the major eliminating organ of zeaxanthin, accounting for 53.5-90.1% of the total clearance process (hepatic extraction ratio of 0.623). DISCUSSION AND CONCLUSIONS: To our knowledge, this is the first systematic study to report factors that determine the oral bioavailability and systemic clearance of zeaxanthin.


Asunto(s)
Antioxidantes , Carotenoides , Animales , Ratas , Zeaxantinas/metabolismo , Disponibilidad Biológica , Carotenoides/metabolismo , Antioxidantes/metabolismo , Hígado/metabolismo
10.
ACS Appl Mater Interfaces ; 14(45): 50507-50519, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331408

RESUMEN

A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Infección de Heridas , Ratones , Animales , Óxido Nítrico/farmacología , Pseudomonas aeruginosa , Polietileneimina/farmacología , Adhesivos/farmacología , Infección de Heridas/tratamiento farmacológico , Cicatrización de Heridas , Bacterias , Antibacterianos/farmacología
11.
PLoS One ; 17(11): e0276654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331932

RESUMEN

The response of a cell population is often delayed relative to drug injection, and individual cells in a population of cells have a specific age distribution. The application of transit compartment models (TCMs) is a common approach for describing this delay. In this paper, we propose a TCM in which damaged cells caused by a drug are given by a single fractional derivative equation. This model describes the delay as a single equation composed of fractional and ordinary derivatives, instead of a system of ODEs expressed in multiple compartments, applicable to the use of the PK concentration in the model. This model tunes the number of compartments in the existing model and expresses the delay in detail by estimating an appropriate fractional order. We perform model robustness, sensitivity analysis, and change of parameters based on the amount of data. Additionally, we resolve the difficulty in parameter estimation and model simulation using a semigroup property, consisting of a system with a mixture of fractional and ordinary derivatives. This model provides an alternative way to express the delays by estimating an appropriate fractional order without determining the pre-specified number of compartments.


Asunto(s)
Neoplasias , Redes Neurales de la Computación , Humanos , Algoritmos , Simulación por Computador , Neoplasias/tratamiento farmacológico
12.
Carbohydr Polym ; 296: 119887, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088017

RESUMEN

A donepezil hydrochloride (DPZ)-reinforced cellulose nanocrystal (CNC) hydrogel structure with pH control was developed for sustained drug delivery through subcutaneous injection. In the present study, an aggregated CNC gel was fabricated by reducing the electrostatic repulsion between CNC particles by incorporating DPZ and adjusting the pH value to 7.7. The crosslinked CNC/DPZ (cCNC/DPZ) gel exhibited immediate gelation, injection capability through a single syringe, improved viscoelasticity, and shear-thinning properties. Interactions between the CNCs and DPZ and pH regulation were assessed using several solid-state studies, and a sustained release profile of the DPZ from the cCNC/DPZ gel was also observed. In the pharmacokinetic study, a higher half-life and mean residence time and lower maximum drug concentration values were obtained in the cCNC/DPZ group than in the DPZ solution and CNC/DPZ groups after subcutaneous injection. Drug salt form-incorporated and pH-controlled CNC hydrogel systems can be safely applied to the subcutaneous delivery of DPZ.


Asunto(s)
Nanopartículas , Celulosa/química , Donepezilo , Hidrogeles/química , Nanopartículas/química , Electricidad Estática
13.
Artículo en Inglés | MEDLINE | ID: mdl-35921698

RESUMEN

Velpatasvir is a novel inhibitor of hepatitis C virus nonstructural protein 5A that received US Food and Drug Administration approval for the treatment of patients with chronic hepatitis C virus genotypes 1-6. In the present study, a sensitive bioanalytical method for velpatasvir was developed using high-performance liquid chromatography coupled with a fluorescence detector system, which was applied to elucidate the factors determining the oral bioavailability and disposition of velpatasvir. This method offered sufficient sensitivity, with a lower limit of quantification of 0.5 ng/mL, which is comparable to previously reported methods using liquid chromatography coupled with tandem mass spectrometry. Velpatasvir exhibited low oral bioavailability, moderate intestinal permeability, and significant biliary excretion in rats. It was also found to be significantly metabolized in the liver, with a low-to-moderate extraction ratio; however, its intestinal metabolism and enterohepatic circulation did not occur. Thus, our present results demonstrate that the oral bioavailability of velpatasvir is primarily dependent on gut absorption and hepatic first-pass metabolism. The fractions of velpatasvir dose unabsorbed from the gut and eliminated by the liver before reaching the systemic circulation following oral administration were estimated to be 32.8%-58.6% and 4.74%-30.54% of the oral dose, respectively. To our knowledge, this is the first systematic study to investigate the contributory roles of biopharmaceutical and pharmacokinetic factors on the oral bioavailability of velpatasvir, together with a new bioanalytical method for velpatasvir.


Asunto(s)
Hepacivirus , Hepatitis C Crónica , Administración Oral , Animales , Antivirales , Disponibilidad Biológica , Carbamatos , Cromatografía Líquida de Alta Presión , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos , Ratas
14.
Mol Pharm ; 19(11): 3784-3794, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36043999

RESUMEN

Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3ß (GSK3ß) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3ß in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.


Asunto(s)
Colitis , Profármacos , Ratas , Animales , Profármacos/química , Riluzol/uso terapéutico , Riluzol/farmacología , Reposicionamiento de Medicamentos , Ratas Sprague-Dawley , Glucógeno Sintasa Quinasa 3 beta , Colon , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Antiinflamatorios/química
15.
Sci Rep ; 12(1): 10086, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710563

RESUMEN

The measured response of cell population is often delayed relative to drug injection, and individuals in a population have a specific age distribution. Common approaches for describing the delay are to apply transit compartment models (TCMs). This model reflects that all damaged cells caused by drugs suffer transition processes, resulting in death. In this study, we present an extended TCM using Coxian distribution, one of the phase-type distributions. The cell population attacked by a drug is described via age-structured models. The mortality rate of the damaged cells is expressed by a convolution of drug rate and age density. Then applying to Erlang and Coxian distribution, we derive Erlang TCM, representing the existing model, and Coxian TCMs, reflecting sudden death at all ages. From published data of drug and tumor, delays are compared after parameter estimations in both models. We investigate the dynamical changes according to the number of the compartments. Model robustness and equilibrium analysis are also performed for model validation. Coxian TCM is an extended model considering a realistic case and captures more diverse delays.


Asunto(s)
Neoplasias , Humanos , Modelos Biológicos
17.
Biomed Pharmacother ; 151: 113141, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35609369

RESUMEN

Resveratrol, a natural polyphenolic phytoalexin, is a dietary supplement that improves the outcomes of metabolic, cardiovascular, and other age-related diseases due to its diverse pharmacological activities. Although there have been several preclinical and clinical investigations of resveratrol, the contributions of gut phase-II metabolism and enterohepatic circulation to the oral bioavailability and pharmacokinetics of resveratrol remain unclear. Furthermore, a physiologically-based pharmacokinetic (PBPK) model that accurately describes and predicts the systemic exposure profiles of resveratrol in clinical settings has not been developed. Experimental data were acquired from several perspectives, including in vitro protein binding and blood distribution, in vitro tissue S9 metabolism, in situ intestinal perfusion, and in vivo pharmacokinetics and excretion studies. Using these datasets, an in-house whole-body PBPK model incorporating route-dependent phase-II (glucuronidation and sulfation) gut metabolism and enterohepatic circulation processes was constructed and optimized for chemical-specific parameters. The developed PBPK model aligned with the observed systemic exposure profiles of resveratrol in single and multiple dosing regimens with an acceptable accuracy of 0.538-0.999-fold errors. Furthermore, the model simulations elucidated the substantial contribution of gut first-pass metabolism to the oral bioavailability of resveratrol and suggested differential effects of enterohepatic circulation on the systemic exposure of resveratrol between rats and humans. After partial modification and verification, our proposed PBPK model would be valuable to optimize dosage regimens and predict food-drug interactions with resveratrol-based natural products in various clinical scenarios.


Asunto(s)
Circulación Enterohepática , Modelos Biológicos , Animales , Disponibilidad Biológica , Humanos , Inactivación Metabólica , Ratas , Resveratrol
18.
Pharmaceutics ; 14(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35336057

RESUMEN

Dapsone (DpS) is an antimicrobial and antiprotozoal agent, especially used to treat leprosy. The drug shares a similar mode of action with sulfonamides. Additionally, it possesses anti-inflammatory activity, useful for treating autoimmune diseases. Here, we developed a "me-better" alternative to sulfasalazine (SSZ), a colon-specific prodrug of mesalazine (5-ASA) used as an anti-inflammatory bowel diseases drug; DpS azo-linked with two molecules of 5-ASA (AS-DpS-AS) was designed and synthesized, and its colon specificity and anti-colitic activity were evaluated. AS-DpS-AS was converted to DpS and the two molecules of 5-ASA (up to approximately 87% conversion) within 24 h after incubation in the cecal contents. Compared to SSZ, AS-DpS-AS showed greater efficiency in colonic drug delivery following oral gavage. Simultaneously, AS-DpS-AS substantially limited the systemic absorption of DpS. In a dinitrobenzene sulfonic acid-induced rat colitis model, oral AS-DpS-AS elicited better efficacy against rat colitis than oral SSZ. Moreover, intracolonic treatment with DpS and/or 5-ASA clearly showed that combined treatment with DpS and 5-ASA was more effective against rat colitis than the single treatment with either DpS or 5-ASA. These results suggest that AS-DpS-AS may be a "me-better" drug of SSZ with higher therapeutic efficacy, owing to the combined anti-colitic effects of 5-ASA and DpS.

19.
Int J Biol Macromol ; 208: 520-529, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35337911

RESUMEN

Curcumin-loaded nanostructured lipid carriers (Cur-NLCs)-based hydroxypropyl methylcellulose (HPMC) oleogels (Cur-NLCs-HPMC-OGs) were fabricated using a cryogel template. The effect of the HPMC viscosity grade on the oleogel characteristics and in situ intestinal absorption were examined. Highly stable Cur-NLCs were prepared with a mean particle size of 314 nm and polydispersity index of 0.275. Cur-NLCs affected the creamy texture of self-standing Cur-NLCs-HPMC-OGs. The Cur-NLCs were tightly packed as oil droplets in the network of HPMC. However, a high viscosity of HPMC-4000 led to a greater ability to entrap and prevent droplet coalescence compared to a low viscosity of HPMC-400. NLCs promoted the release of free fatty acids during in vitro lipid digestion, whereas HPMC-4000 maintained the strength and durability of oleogels against mechanical and enzymatic breakdown. The in situ loop results revealed higher curcumin absorption by Cur-NLCs-HPMC-OGs than by Cur-HPMC-OGs. HMPC-4000 showed slightly higher curcumin absorption compared to HPMC-400.


Asunto(s)
Curcumina , Animales , Digestión , Portadores de Fármacos , Derivados de la Hipromelosa , Absorción Intestinal , Lípidos , Compuestos Orgánicos , Tamaño de la Partícula , Ratas
20.
Biomed Pharmacother ; 146: 112520, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902744

RESUMEN

Entrectinib (Rozlytrek®) is an oral antineoplastic agent approved by the U.S. Food and Drug Administration in 2019 for the treatment of c-ros oncogene 1 (ROS1)-positive non-small cell lung cancer and neurotrophic tyrosine receptor kinase (NTRK) fusion-positive solid tumors. Although there have been a few studies on the pharmacokinetics of entrectinib, the relative contributions of several kinetic factors determining the oral bioavailability and systemic exposure of entrectinib are still worthy of investigation. Experimental data on the intestinal absorption and disposition of entrectinib in rats were acquired from studies on in vitro protein binding/tissue S9 metabolism, in situ intestinal perfusion, and in vivo dose-escalation/hepatic extraction. Using these datasets, an in-house whole-body physiologically based pharmacokinetic (PBPK) model incorporating the QGut model concepts and segregated blood flow in the gut was constructed and optimized with respect to drug-specific parameters. The established rat PBPK model was further extrapolated to humans through relevant physiological scale-up and parameter optimization processes. The optimized rat and human PBPK models adequately captured the impact of route-dependent gut metabolism on the systemic exposure to entrectinib and closely mirrored various preclinical and clinical observations. Our proposed PBPK model could be useful in optimizing dosage regimens and predicting drug interaction potential in various clinical conditions, after partial modification and validation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Benzamidas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Indazoles , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Biológicos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...