Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552255

RESUMEN

For the long-term preservation of genetic resources, cryopreservation techniques have been developed for strawberry germplasm, mainly using in vitro-grown shoot tips. In this study, genetic stability was tested under greenhouse conditions for six strawberry accessions (IT232511, PHS0132, IT245810, IT245830, IT245852, and IT245860) derived from the following procedures: (1) conventional propagation (GH: greenhouse maintained); (2) in vitro propagation (TC: tissue culture); (3) pretreatment before cryopreservation (-LN: non-liquid nitrogen exposure); and (4) cryopreservation (+LN: liquid nitrogen exposure). To test the performance of phenotypic traits, we measured six vegetative and five fruit traits. There were no distinct differences in most of the characteristics, but a few traits, such as sugar content and pH of fruits in three accessions, showed higher values in +LN compared to GH. However, the differences disappeared in the first runner generation. To test genetic variations, a total of 102 bands were generated by twelve inter simple sequence repeat (ISSR) primers. A few polymorphic bands were found only in plants derived from TC of IT245860, which was not cryopreserved. The sequencing analysis of four polymorphic bands produced by ISSR_15 showed that none of these sequences matched the characterized genes in NCBI. Phenotypic abnormality was not observed across all plants. This study indicates that cryopreserved plants of the six strawberry accessions are phenotypically and genetically stable. Therefore, the results of this study can help to implement cryobanking of strawberry germplasm.

2.
Plants (Basel) ; 10(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921437

RESUMEN

Potato (Solanum tuberosum L.) is an important staple food and economic crop in many countries. It is of critical importance to understand the genetic diversity and population structure for effective collection, conservation, and utilization of potato germplasm. Thus, the objective of the present study was to investigate the genetic diversity and population structure of potato germplasm conserved in the National Agrobiodiversity Center (NAC) of South Korea to provide basic data for future preservation and breeding of potato genetic resources. A total of 24 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 482 potato accessions. A total of 257 alleles were detected, with an average of 10.71 alleles per locus. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual accessions within the population, while only 3% was distributed among populations. Results of genetic structure analysis based on STRUCTURE and discriminant analysis of principal components revealed that 482 potato accessions could be divided into two main subpopulations. Accessions of subpopulation 1 mainly belonged to cultivars and breeding lines. Accessions of subpopulations 2 basically corresponded to wild relatives of potatoes. Results of this study provide useful information for potato improvement and conservation programs, although further studies are needed for a more accurate evaluation of genetic diversity and phenotypic traits of potatoes.

3.
Theor Appl Genet ; 116(7): 945-52, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18278477

RESUMEN

Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available.


Asunto(s)
Genoma de Planta , Glycine max/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico , Cromosomas de las Plantas , ADN de Plantas , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite
4.
Genetics ; 176(1): 685-96, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17339218

RESUMEN

The first genetic transcript map of the soybean genome was created by mapping one SNP in each of 1141 genes in one or more of three recombinant inbred line mapping populations, thus providing a picture of the distribution of genic sequences across the mapped portion of the genome. Single-nucleotide polymorphisms (SNPs) were discovered via the resequencing of sequence-tagged sites (STSs) developed from expressed sequence tag (EST) sequence. From an initial set of 9459 polymerase chain reaction primer sets designed to a diverse set of genes, 4240 STSs were amplified and sequenced in each of six diverse soybean genotypes. In the resulting 2.44 Mbp of aligned sequence, a total of 5551 SNPs were discovered, including 4712 single-base changes and 839 indels for an average nucleotide diversity of Theta= 0.000997. The analysis of the observed genetic distances between adjacent genes vs. the theoretical distribution based upon the assumption of a random distribution of genes across the 20 soybean linkage groups clearly indicated that genes were clustered. Of the 1141 genes, 291 mapped to 72 of the 112 gaps of 5-10 cM in the preexisting simple sequence repeat (SSR)-based map, while 111 genes mapped in 19 of the 26 gaps >10 cM. The addition of 1141 sequence-based genic markers to the soybean genome map will provide an important resource to soybean geneticists for quantitative trait locus discovery and map-based cloning, as well as to soybean breeders who increasingly depend upon marker-assisted selection in cultivar improvement.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas/genética , Glycine max/genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , ARN de Planta/genética , Transcripción Genética/genética , Secuencia de Bases , Cartilla de ADN , Bases de Datos de Ácidos Nucleicos , Exones/genética , Etiquetas de Secuencia Expresada , Heterogeneidad Genética , Ligamiento Genético , Intrones/genética , Repeticiones de Minisatélite/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/genética , Lugares Marcados de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...