Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 23(1): 831, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37670250

RESUMEN

BACKGROUND: Heterogeneous tumor cells are thought to be a significant factor in the failure of endocrine therapy in estrogen receptor-positive (ER+) cancers. Culturing patient-derived breast cancer cells (PDBCCs) provides an invaluable tool in pre-clinical and translational research for the heterogeneity of cancer cells. This study aimed to investigate the effects of different media components and culture methods on the BCSC-associated immunophenotypes and gene expression in ER + PDBCCs. METHODS: Ten patients with ER + breast cancer were employed in this study, six of whom had neoadjuvant chemotherapy and four of whom did not. PDBCCs were isolated by enzymatic methods using collagen I and hyaluronidase. PDBCCs were grown as monolayers in mediums with different compositions and as multicellular spheroid in a suspended condition. Collagen I-coated plate and ultralow attachment plate coated with polymer-X were used for monolayer and spheroid culture. Flow cytometry, immunofluorescent staining, RT-PCR, and RNA-sequencing were employed to examine the immunophenotype and genetic profile of PDBCCs. RESULTS: More than 95% of PDBCCs sustain EpCAM high/+/fibroblast marker- phenotypes in monolayer conditions by subculturing 3-4 times. A83-01 removal induced senescent cells with high ß-galactosidase activity. PDBCCs grown as monolayers were characterized by the majority of cells having an EpCAM+/CD49f + phenotype. Compared to full media in monolayer culture, EGF removal increased EpCAM+/CD49f - phenotype (13.8-fold, p = 0.028), whereas R-spondin removal reduced it (0.8-fold, p = 0.02). A83-01 removal increased EpCAM+/CD24 + phenotype (1.82-fold, p = 0.023) and decreased EpCAM low/-/CD44+/CD24- phenotype (0.45-fold, p = 0.026). Compared to monolayer, spheroid resulted in a significant increase in the population with EpCAM-/CD49+ (14.6-fold, p = 0.006) and EpCAM low/-/CD44+/CD24- phenotypes (4.16-fold, p = 0.022) and ALDH high activity (9.66-fold, p = 0.037). ALDH1A and EMT-related genes were upregulated. In RNA-sequencing analysis between spheroids and monolayers, a total of 561 differentially expressed genes (2-fold change, p < 0.05) were enriched in 27 KEGG pathways including signaling pathways regulating pluripotency of stem cells. In a recurrence-free survival analysis based on the Kaplan-Meier Plotter database of the up-and down-regulated genes identified in spheroids, 15 up-, and 14 down-regulated genes were associated with poor prognosis of breast cancer patients. CONCLUSION: The media composition and spheroid culture method change in the BCSCs and EMT markers of PDBCCs, implying the importance of defining the media composition and culture method for studying PDBCCs in vitro.


Asunto(s)
Colágeno Tipo I , Neoplasias , Molécula de Adhesión Celular Epitelial , Integrina alfa6 , ARN
2.
J Cosmet Dermatol ; 21(6): 2602-2609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34418257

RESUMEN

BACKGROUND: The build-up of advanced glycation end products (AGEs) is one of important factor of skin aging. Natural compounds with anti-glycation activities might have great anti-aging potential. AIMS: The objective of this study was to evaluate an anti-glycation effects of methyl gallate as a potent ingredient for anti-aging. METHODS: We first evaluated the AGEs inhibitory ability of methyl gallate in BSA/glucose system. Levels of Nε-CML and carbonyl contents were also measured in BSA/glucose system. To further investigate if methyl gallate could prevent glycation in full-thickness human skin explants. Glycation action was determined by the observation of the general morphology of dermis and epidermis structures and FBN-1 and of CML immunostaining. In an in-vivo study, primary irritation test was also performed to ensure the safety of methyl gallate for human skin. RESULTS: It is known that methyl gallate can suppress glycation reaction between BSA and glucose. Methyl gallate also has a remarkable potential to reduce the oxidation of proteins. Furthermore, the anti-glycation activity of methyl gallate has been confirmed in a human skin ex-vivo model. Methyl gallate decreased the expression of CML but stimulated the expression of FBN-1 compared with MGO treatment. In an in-vivo study, methyl gallate (0.1%) did not cause any skin irritation, suggesting that methyl gallate could be used as an active ingredient in cosmetics. CONCLUSION: Our results showed that methyl gallate could protect against glucose-mediated glycation in vitro. Furthermore, methyl gallate significantly prevented glycation in living human skin explants. Due to these beneficial effects, methyl gallate can be used to prevent or manage AGE-mediated skin aging.


Asunto(s)
Ácido Gálico , Envejecimiento de la Piel , Ácido Gálico/análogos & derivados , Glucosa , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Humanos
3.
Biochem Biophys Rep ; 28: 101136, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34646949

RESUMEN

We here evaluated the therapeutic effect of tumor cell-derived exosomes (TEXs)-stimulated dendritic cells (DCs) in a syngeneic orthotopic breast tumor model. The DC line DC2.4 and breast cancer cell line E0771 originally isolated from C57BL/6 mice were used. E0771 cells stably expressing the exosomal CD63-RFP or luciferase (Luc) and DC2.4 cells stably expressing GFP were produced using lentivirus. TEXs were purified from conditioned medium of E0771/CD63-RFP cells. Breast tumor model was established by injecting E0771/Luc cells into mammary gland fat pad of mice. TEXs contained immune modulatory molecules such as HSP70, HSP90, MHC I, MHC II, TGF-ß, and PD-L1. TEXs were easily taken by DC2.4 cells, resulting in a significant increase in the in vitro proliferation and migration abilities of DC2.4 cells, accompanied by the upregulation of CD40. TEX-DC-treated group exhibited a decreased tumor growth compared with control group. CD8+ cells were more abundant in the tumors and lymph nodes of TEX-DC-treated group than in those of control group, whereas many CD4+ or FOXP3+ cells were localized in those of control group. Our results suggest a potential application of TEX-DC-based cancer immunotherapy.

4.
BMC Cancer ; 20(1): 375, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366230

RESUMEN

BACKGROUND: The cholesterol biosynthesis pathway is typically upregulated in breast cancer. The role of NAD(P)-dependent steroid dehydrogenase-like (NSDHL) gene, which is involved in cholesterol biosynthesis, in breast cancer remains unknown. This study aimed to uncover the role of NSDHL in the growth and metastasis of breast cancer. METHODS: After NSDHL knockdown by transfection of short interfering RNA into human breast cancer cell lines (MCF-7, MDA-MB-231 and BT-20) and human breast epithelial cell line (MCF10A), cell proliferation assay, cell cycle analysis, three-dimensional cell culture, clonogenic assay, transwell migration and invasion assays, and wound healing assay were performed. Erlotinib was used as the target drug for epidermal growth factor receptor. Immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1wjl /SzJ) were used as orthotropic breast tumor models by injecting them with NSDHL-knockdown MDA-MB-231 cells using lentivirus-carrying NSDHL short hairpin RNA. Clinical data from 3951 breast cancer patients in Gene Expression Omnibus databases were used to investigate the potential prognostic role of NSDHL by survival analysis. RESULTS: NSDHL knockdown in BT-20, and MDA-MB-231 resulted in a significant decrease in their viability, colony formation, migration, and invasion abilities (p < 0.05). Total cholesterol levels were observed to be significantly decreased in NSDHL-knockdown BT-20 and MDA-MB-231 (p < 0.0001). NSDHL knockdown significantly increased the rate of erlotinib-induced cell death, especially in MDA-MB-231 (p = 0.01). NSDHL knockdown led to significantly decreased tumor growth and lung metastasis in the MDA-MB-231 xenograft model (p < 0.01). Clinically, high NSDHL expression in tumors of patients with breast cancer was associated with significantly reduced recurrence-free survival (p < 0.0001). CONCLUSIONS: NSDHL might have a role in promoting breast cancer progression. The usage of NSDHL as a therapeutic target in breast cancer needs to be clarified in further studies.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Neoplasias de la Mama/patología , Colesterol/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Animales , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Ratones , Ratones Endogámicos NOD , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Skin Pharmacol Physiol ; 32(5): 254-264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31352443

RESUMEN

BACKGROUND/OBJECTIVES: Ultraviolet (UV) radiation damages the stratum corneum (SC) and disrupts the skin barrier. The damaged skin changes in the molecular composition of the SC, including its water content. However, it is difficult to examine the in vivo SC changes with existing methods, so those have not been well characterized. Therefore, we investigated in vivo changes of UV-induced SC damage using confocal Raman spectroscopy. METHOD: We irradiated the volar forearm of 10 subjects with 0.5, 1, and 1.5 minimal erythemal doses of UV radiation. Then, we examined erythema, the transepidermal water loss (TEWL), the water content, the natural moisturizing factor (NMF), and the lipids of the skin. RESULTS: After UV irradiation, erythema and TEWL of the skin were both increased. The bound water content of the SC was also increased following UV irradiation. The NMF of the SC revealed different tendencies. All free amino acids (FAAs) of the NMF were increased after UV irradiation, except proline. trans-urocanic acid, pyrrolidone carboxylic acid, lactate, and urea, which are NMF components produced by the subsequent catabolism of FAAs and sweat, were decreased after UV irradiation. The amount of ceramide in the SC was also decreased after UV exposure, while cholesterol was increased. CONCLUSIONS: The bound water content of the SC was increased by UV exposure along with increasing TEWL, several NMF components, and cholesterol. These in vivo results for UV-damaged SC obtained via Raman spectroscopy could be applied to research with regard to protecting the SC from UV radiation and treating UV-damaged SC.


Asunto(s)
Epidermis/efectos de los fármacos , Queratinas/metabolismo , Rayos Ultravioleta , Adulto , Epidermis/metabolismo , Eritema/metabolismo , Femenino , Humanos , Masculino , Exposición a la Radiación , Espectrometría Raman , Pérdida Insensible de Agua/efectos de la radiación , Adulto Joven
6.
Biomacromolecules ; 19(7): 2682-2690, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29847726

RESUMEN

We herein propose a polymeric nanovehicle system that has the ability to remarkably improve cellular uptake and transdermal delivery. Cell-penetrating peptide-patchy deformable polymeric nanovehicles were fabricated by tailored coassembly of amphiphilic poly(ethylene oxide)- block-poly(ε-caprolactone) (PEO- b-PCL), mannosylerythritol lipid (MEL), and YGRKKRRQRRR-cysteamine (TAT)-linked MEL. Using X-ray diffraction, differential scanning calorimetry, and nuclear magnetic resonance analyses, we revealed that the incorporation of MEL having an asymmetric alkyl chain configuration was responsible for the deformable phase property of the vehicles. We also discovered that the nanovehicles were mutually attracted, exhibiting a gel-like fluid characteristic due to the dipole-dipole interaction between the hydroxyl group of MEL and the methoxy group of PEO- b-PCL. Coassembly of TAT-linked MEL with the deformable nanovehicles significantly enhanced cellular uptake due to macropinocytosis and caveolae-/lipid raft-mediated endocytosis. Furthermore, the in vivo skin penetration test revealed that our TAT-patchy deformable nanovehicles remarkably improved transdermal delivery efficiency.


Asunto(s)
Glucolípidos/química , Nanopartículas/química , Fragmentos de Péptidos/administración & dosificación , Poliésteres/química , Absorción Cutánea , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación , Administración Cutánea , Adulto , Línea Celular , Cisteamina/química , Femenino , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacocinética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...