Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20288, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434133

RESUMEN

Following the recent terrorist attacks using Novichok agents and the subsequent decomposition operations, understanding the chemical structures of nerve agents has become important. To mitigate the ever-evolving threat of new variants, the Organization for the Prohibition of Chemical Weapons has updated the list of Schedule 1 substances defined by the Chemical Weapons Convention. However, owing to the several possible structures for each listed substance, obtaining an exhaustive dataset is almost impossible. Therefore, we propose a nuclear magnetic resonance-based prediction method for 1H and 13C NMR chemical shifts of Novichok agents based on conformational and density functional study calculations. Four organophosphorus compounds and five G- and V-type nerve agents were used to evaluate the accuracy of the proposed procedure. Moreover, 1H and 13C NMR prediction results for an additional 83 Novichok candidates were compiled as a database to aid future research and identification. Further, this is the first study to successfully predict the NMR chemical shifts of Novichok agents, with an exceptional agreement between predicted and experimental data. The conclusions enable the prediction of all possible structures of Novichok agents and can serve as a firm foundation for preparation against future terrorist attacks using new variants of nerve agents.


Asunto(s)
Agentes Nerviosos , Espectroscopía de Resonancia Magnética/métodos , Organofosfatos , Imagen por Resonancia Magnética
2.
Inorg Chem ; 61(48): 19369-19378, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36416377

RESUMEN

Isosaccharinic acid, a major final product of cellulose degradation under highly alkaline cement porewater conditions, is known to increase the mobility of actinides via strong complex formation. In this study, the formation of Am(III) complexes with α-d-isosaccharinate (ISA) was studied in terms of thermodynamics and coordination structures by combining spectrophotometry, time-resolved laser fluorescence spectroscopy (TRLFS), and density functional theory (DFT) calculations. The formation constants of the Am(III)-ISA complexes were determined by absorption spectroscopy at temperatures in the range of 15-70 °C. The measured reaction enthalpy and entropy changes indicate that the formation of a 1:1 Am(III)-ISA complex is driven by an increase in entropy. By contrast, the 1:2 complex formation is exothermic with a much less increase in entropy. DFT calculations predict that C2- and C4-hydroxyl groups, along with the carboxyl group, participate in the tridentate chelate binding of the primary ISA. The thermodynamic, TRLFS, and DFT results collectively suggest the tridentate binding of the primary ISA to Am(III) via a carboxylate and C2- and C4-hydroxyl groups in the protonated state and reduced dentate binding of the secondary ISA, such as bidentate binding, forming a four-membered ring structure via the carboxylate group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA