Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neonatal Medicine ; : 149-153, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-968399

RESUMEN

Periventricular nodular heterotopia (PNH) is a neuronal migration disorder that occurs during early brain development. Patients with PNH may be asymptomatic and have normal intelligence; however, PNH is also known to cause various symptoms such as seizures, dyslexia, and cardiovascular anomalies. PNH is not commonly diagnosed during early infancy because of the lack of clinical manifestations during this period. We present the case of a female infant diagnosed with PNH based on brain magnetic resonance imaging, who had symptomatic patent ductus arteriosus that had to be ligated surgically and had prolonged feeding cyanosis with frequent apneic spells.

2.
Neonatal Medicine ; : 89-93, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-902830

RESUMEN

Nemaline myopathy is a genetically heterogeneous neuromuscular disorder and one of the most common congenital myopathies. The clinical manifestations usually vary depending on the age of onset. Neonatal nemaline myopathy has the worst prognosis, primarily due to respiratory failure. Several genes associated with nemaline myopathy have been identified, including NEB, ACTA1, TPM3, TPM2, TNNT1, CFL2, KBTBD13, KLHL40, KLHL41, LMOD3, and KBTBD13. Here, we report a neonatal Korean female patient with nemaline myopathy carrying compound heterozygous mutations in the gene KLHL40 as revealed using next generation sequencing (NGS). The patient presented with postnatal cyanosis, respiratory failure, dysphagia, and hypotonia just after birth. To identify the genetic cause underlying the neonatal myopathy, NGS-based gene panel sequencing was performed. Compound heterozygous pathogenic variants were detected in KLHL40: c.[1405G>T];[1582G>A] (p. [Gly469cys];[Glu528Lys]). NGS allows quick and accurate diagnosis at a lower cost compared to traditional serial single gene sequencing, which is greatly advantageous in genetically heterogeneous disorders such as myopathies. Rapid diagnosis will facilitate efficient and timely genetic counseling, prediction of disease prognosis, and establishment of treatments.

3.
Neonatal Medicine ; : 89-93, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-895126

RESUMEN

Nemaline myopathy is a genetically heterogeneous neuromuscular disorder and one of the most common congenital myopathies. The clinical manifestations usually vary depending on the age of onset. Neonatal nemaline myopathy has the worst prognosis, primarily due to respiratory failure. Several genes associated with nemaline myopathy have been identified, including NEB, ACTA1, TPM3, TPM2, TNNT1, CFL2, KBTBD13, KLHL40, KLHL41, LMOD3, and KBTBD13. Here, we report a neonatal Korean female patient with nemaline myopathy carrying compound heterozygous mutations in the gene KLHL40 as revealed using next generation sequencing (NGS). The patient presented with postnatal cyanosis, respiratory failure, dysphagia, and hypotonia just after birth. To identify the genetic cause underlying the neonatal myopathy, NGS-based gene panel sequencing was performed. Compound heterozygous pathogenic variants were detected in KLHL40: c.[1405G>T];[1582G>A] (p. [Gly469cys];[Glu528Lys]). NGS allows quick and accurate diagnosis at a lower cost compared to traditional serial single gene sequencing, which is greatly advantageous in genetically heterogeneous disorders such as myopathies. Rapid diagnosis will facilitate efficient and timely genetic counseling, prediction of disease prognosis, and establishment of treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA