Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Morphol ; 285(5): e21698, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669130

RESUMEN

The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.


Asunto(s)
Lectinas , Temperatura , Animales , Lectinas/metabolismo , Aletas de Animales , Rajidae , Glicosilación , Animales Recién Nacidos , Unión Proteica
2.
Integr Comp Biol ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373826

RESUMEN

Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream that they learned as juveniles. Like some other fishes, salmon growth is asymptotic; they grow continuously throughout life toward a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and wild-origin sockeye salmon fry (O. nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends, existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in olfactory nerve diameter (dmin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution methods Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.

3.
Integr Org Biol ; 5(1): obad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732173

RESUMEN

There is well-documented diversity in the organization of inner ear hair cells in fishes; this variation is thought to reflect the differing functional requirements of species across a range of ecological niches. However, relatively little is known about interspecific variation (and its potential ecological implications) in the number and density of inner ear hair cells in elasmobranchs (sharks, skates, and rays). In this study, we quantified inner ear hair cells in the saccule, lagena, utricle, and macula neglecta of 9 taxonomically and ecologically distinct shark species. Using phylogenetically informed comparative approaches, sharks that feed in the water column had significantly greater hair cell density and total number of hair cells in the lagena and macula neglecta (i.e., vertically oriented maculae) compared to species that feed primarily on the seafloor. In addition, sharks within Carcharhinidae seemingly possess a specialized macula neglecta compared to other shark species. Overall, findings suggest that, similar to bony fishes, there is considerable variation in hair cell organization of shark inner ears, which may be tied to variation in ecology and/or specialized behaviors between different species.

4.
Sci Rep ; 13(1): 11939, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488259

RESUMEN

Considerable diversity has been documented in most sensory systems of elasmobranchs (sharks, rays, and skates); however, relatively little is known about morphological variation in the auditory system of these fishes. Using magnetic resonance imaging (MRI), the inner ear structures of 26 elasmobranchs were assessed in situ. The inner ear end organs (saccule, lagena, utricle, and macula neglecta), semi-circular canals (horizontal, anterior, and posterior), and endolymphatic duct were compared using phylogenetically-informed, multivariate analyses. Inner ear variation can be characterised by three primary axes that are influenced by diet and habitat, where piscivorous elasmobranchs have larger inner ears compared to non-piscivorous species, and reef-associated species have larger inner ears than oceanic species. Importantly, this variation may reflect differences in auditory specialisation that could be tied to the functional requirements and environmental soundscapes of different species.


Asunto(s)
Tiburones , Rajidae , Animales , Conducto Endolinfático , Canales Semicirculares , Túbulos Renales
5.
Artículo en Inglés | MEDLINE | ID: mdl-37348808

RESUMEN

Although pervasive, the effects of climate change vary regionally, possibly resulting in differential behavioral, physiological, and/or phenotypic responses among populations within broadly distributed species. Juvenile Port Jackson sharks (Heterodontus portusjacksoni) from eastern and southern Australia were reared at their current (17.6 °C Adelaide, South Australia [SA]; 20.6 °C Jervis Bay, New South Wales [NSW]) or projected end-of-century (EOC) temperatures (20.6 °C Adelaide, SA; 23.6 °C Jervis Bay, NSW) and assessed for morphological features of skeletal muscle tissue. Nearly all skeletal muscle properties including cellularity, fiber size, myonuclear domain, and satellite cell density did not differ between locations and thermal regimes. However, capillary density was significantly influenced by thermal treatment, where Adelaide sharks raised at current temperatures had a lower capillarity than Jervis Bay sharks raised at ambient or projected EOC temperatures. This may indicate higher metabolic costs at elevated temperatures. However, our results suggest that regardless of the population, juvenile Port Jackson sharks may have limited acclimatory potential to alter muscle metabolic features under a temperature increase, which may make this species vulnerable to climate change.


Asunto(s)
Tiburones , Animales , Tiburones/fisiología , Temperatura , Músculo Esquelético/metabolismo
6.
J Morphol ; 284(1): e21539, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36433755

RESUMEN

Sockeye salmon, Oncorhynchus nerka, are anadromous, semelparous fish that breed in freshwater-typically in streams, and juveniles in most populations feed in lakes for 1 or 2 years, then migrate to sea to feed for 2 or 3 additional years, before returning to their natal sites to spawn and die. This species undergoes important changes in behavior, habitat, and morphology through these multiple life history stages. However, the sensory systems that mediate these migratory patterns are not fully understood, and few studies have explored changes in sensory function and specialization throughout ontogeny. This study investigates changes in the olfactory rosette of sockeye salmon across four different life stages (fry, parr, smolt, and adult). Development of the olfactory rosette was assessed by comparing total rosette size (RS), lamellae number, and lamellae complexity from scanning electron microscopy images across life stages, as a proxy for olfactory capacity. Olfactory RS increased linearly with lamellae number and body size (p < .001). The complexity of the rosette, including the distribution of sensory and nonsensory epithelia and the appearance of secondary lamellar folding, varied between fry and adult life stages. These differences in epithelial structure may indicate variation in odor-processing capacity between juveniles imprinting on their natal stream and adults using those odor memories in the final stages of homing to natal breeding sites. These findings improve our understanding of the development of the olfactory system throughout life in this species, highlighting that ontogenetic shifts in behavior and habitat may coincide with shifts in nervous system development.


Asunto(s)
Salmón , Olfato , Animales , Salmón/fisiología , Olfato/fisiología
7.
Hear Res ; 424: 108600, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087420

RESUMEN

Studies on the auditory system of fishes can provide fundamental information about the early evolution of vertebrate hearing. While there are limited data available on the auditory system of bony fishes, comparatively far less is known about auditory structures in elasmobranchs, despite their critical basal position within vertebrate evolution. Specifically, while there is a high degree of plasticity in the nervous system, little is known about how the different sensory epithelia within the inner ear vary throughout life in elasmobranchs. Using a combination of immunohistochemistry and fluorescence microscopy, we quantified macular area, number of sensory hair cells, hair cell density, and hair cell orientations in the saccule, lagena, utricle, and macula neglecta of school sharks (Galeorhinus galeus) of varying body size. In all maculae, macular area and the number of hair cells increased significantly throughout ontogeny, while hair cell density displayed a concurrent ontogenetic decrease (excluding the utricle). There were also significant differences in macular area, hair cell number, and hair cell density between the four maculae. However, hair cell orientation patterns did not vary between individuals and did not change with body growth. These findings represent one of the first comprehensive characterisations of the inner ear sensory epithelia in an elasmobranch, and reveal changes in morphology that may have implications for auditory capabilities through ontogeny.


Asunto(s)
Oído Interno , Tiburones , Animales , Peces/anatomía & histología , Peces/fisiología , Células Ciliadas Auditivas , Sáculo y Utrículo , Instituciones Académicas
8.
J Morphol ; 282(9): 1415-1431, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34228354

RESUMEN

The cetacean vertebral canal houses the spinal cord and arterial supply to and venous drainage from the entire central nervous system (CNS). Thus, unlike terrestrial mammals, the cetacean spinal cord lies within a highly vascularized space. We compared spinal cord size and vascular volumes within the vertebral canal across a sample of shallow and deep diving odontocetes. We predicted that the (a) spinal cord, a metabolically expensive tissue, would be relatively small, while (b) volumes of vascular structures would be relatively large, in deep versus shallow divers. Our sample included the shallow diving Tursiops truncatus (n = 2) and Delphinus delphis (n = 3), and deep diving Kogia breviceps (n = 2), Mesoplodon europaeus (n = 2), and Ziphius cavirostris (n = 1). Whole, frozen vertebral columns were cross-sectioned at each intervertebral disc, scaled photographs of vertebral canal contents acquired, and cross-sectional areas of structures digitally measured. Areas were multiplied by vertebral body lengths and summed to calculated volumes of neural and vascular structures. Allometric analyses revealed that the spinal cord scaled with negative allometry (b = 0.51 ± 0.13) with total body mass (TBM), and at a rate significantly lower than that of terrestrial mammals. As predicted, the spinal cord represented a smaller percentage of the total vertebral canal volume in the deep divers relative to shallow divers studied, as low as 2.8% in Z. cavirostris. Vascular volume scaled with positive allometry (b = 1.2 ± 0.22) with TBM and represented up to 96.1% (Z. cavirostris) of the total vertebral canal volume. The extreme deep diving beaked whales possessed 22-35 times more vascular volume than spinal cord volume within the vertebral canal, compared with the 6-10 ratio in the shallow diving delphinids. These data offer new insights into morphological specializations of neural and vascular structures that may contribute to differential diving capabilities across odontocete cetaceans.


Asunto(s)
Delfín Mular , Ballenas , Animales , Médula Espinal , Columna Vertebral
9.
J Fish Biol ; 99(3): 990-998, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34019307

RESUMEN

Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.


Asunto(s)
Branquias , Tiburones , Animales , Tamaño Corporal , Peces , Tamaño de los Órganos
10.
Front Neuroanat ; 14: 560534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324175

RESUMEN

There is currently a limited understanding of the morphological and functional organization of the olfactory system in cartilaginous fishes, particularly when compared to bony fishes and terrestrial vertebrates. In this fish group, there is a clear paucity of information on the characterization, density, and distribution of olfactory receptor neurons (ORNs) within the sensory olfactory epithelium lining the paired olfactory rosettes, and their functional implications with respect to the hydrodynamics of incurrent water flow into the nares. This imaging study examines the brownbanded bamboo shark Chiloscyllium punctatum (Elasmobranchii) and combines immunohistochemical labeling using antisera raised against five G-protein α-subunits (Gαs/olf, Gαq/ 11 / 14, Gαi- 1 / 2 / 3, Gαi- 3, Gα o ) with light and electron microscopy, to characterize the morphological ORN types present. Three main ORNs ("long", "microvillous" and "crypt-like") are confirmed and up to three additional microvilli-bearing types are also described; "Kappe-like" (potential or homologous "Kappe" as in teleosts), "pear-shaped" and "teardrop-shaped" cells. These morphotypes will need to be confirmed molecularly in the future. Using X-ray diffusible iodine-based contrast-enhanced computed tomography (diceCT), high-resolution scans of the olfactory rosettes, olfactory bulbs (OBs), peduncles, and telencephalon reveal a lateral segregation of primary olfactory inputs within the OBs, with distinct medial and lateral clusters of glomeruli, suggesting a potential somatotopic organization. However, most ORN morphotypes are found to be ubiquitously distributed within the medial and lateral regions of the olfactory rosette, with at least three microvilli-bearing ORNs labeled with anti-Gα o found in significantly higher densities in lateral lamellae [in lateral lamellae] and on the anterior portion of lamellae (facing the olfactory cavity). These microvilli-bearing ORN morphotypes (microvillous, "Kappe-like," "pear-shaped," and "teardrop-shaped") are the most abundant across the olfactory rosette of this species, while ciliated ORNs are less common and crypt cells are rare. Spatial simulations of the fluid dynamics of the incurrent water flow into the nares and within the olfactory cavities indicate that the high densities of microvilli-bearing ORNs located within the lateral region of the rosette are important for sampling incoming odorants during swimming and may determine subsequent tracking behavior.

11.
Brain Behav Evol ; 95(3-4): 162-180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33227806

RESUMEN

Throughout an animal's life, species may occupy different environments and exhibit distinct life stages, known as ontogenetic shifts. The life histories of most sharks (class: Chondrichthyes) are characterized by these ontogenetic shifts, which can be defined by changes in habitat and diet as well as behavioral changes at the onset of sexual maturity. In addition, fishes experience indeterminate growth, whereby the brain and body grow throughout the organism's life. Despite a presupposed lifelong neurogenesis in sharks, very little work has been done on ontogenetic changes in the brain, which may be informative about functional shifts in sensory and behavioral specializations. This study quantified changes in brain-body scaling and the scaling of six major brain regions (olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and medulla oblongata) throughout ontogeny in the Atlantic sharpnose shark, Rhizoprio-nodon terraenovae. As documented in other fishes, brain size increased significantly with body mass throughout ontogeny in this species, with the steepest period of growth in early life. The telencephalon, diencephalon, optic tectum, and medulla oblongata scaled with negative allometry against the rest of the brain throughout ontogeny. However, notably, the olfactory bulbs and cerebellum scaled hyperallometrically to the rest of the brain, whereby these structures enlarged disproportionately as this species matured. Changes in the relative size of the olfactory bulbs throughout ontogeny may reflect an increased reliance on olfaction at later life history stages in R. terraenovae, while changes in the relative size of the cerebellum throughout ontogeny may be indicative of the ability to capture faster prey or an increase in migratory nature as this species moves to offshore habitats, associated with the onset of sexual maturity.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Neurogénesis/fisiología , Tiburones/anatomía & histología , Tiburones/crecimiento & desarrollo , Animales , Tamaño de los Órganos
12.
Brain Behav Evol ; 95(3-4): 139-161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33171468

RESUMEN

The volume of the olfactory bulbs (OBs) relative to the brain has been used previously as a proxy for olfactory capabilities in many vertebrate taxa, including fishes. Although this gross approach has predictive power, a more accurate assessment of the number of afferent olfactory inputs and the convergence of this information at the level of the telencephalon is critical to our understanding of the role of olfaction in the behaviour of fishes. In this study, we used transmission electron microscopy to assess the number of first-order axons within the olfactory nerve (ON) and the number of second-order axons in the olfactory peduncle (OP) in established model species within cartilaginous (brownbanded bamboo shark, Chiloscyllium punctatum [CP]) and bony (common goldfish, Carassius auratus [CA]) fishes. The total number of axons varied from a mean of 18.12 ± 7.50 million in the ON to a mean of 0.38 ± 0.21 million in the OP of CP, versus 0.48 ± 0.16 million in the ON and 0.09 ± 0.02 million in the OP of CA. This resulted in a convergence ratio of approximately 50:1 and 5:1, respectively, for these two species. Based on astroglial ensheathing, axon type (unmyelinated [UM] and myelinated [M]) and axon size, we found no differentiated tracts in the OP of CP, whereas a lateral and a medial tract (both of which could be subdivided into two bundles or areas) were identified for CA, as previously described. Linear regression analyses revealed significant differences not only in axon density between species and locations (nerves and peduncles), but also in axon type and axon diameter (p < 0.05). However, UM axon diameter was larger in the OPs than in the nerve in both species (p = 0.005), with no significant differences in UM axon diameter in the ON (p = 0.06) between species. This study provides an in-depth analysis of the neuroanatomical organisation of the ascending olfactory pathway in two fish taxa and a quantitative anatomical comparison of the summation of olfactory information. Our results support the assertion that relative OB volume is a good indicator of the level of olfactory input and thereby a proxy for olfactory capabilities.


Asunto(s)
Axones/ultraestructura , Carpa Dorada/anatomía & histología , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Vías Olfatorias/citología , Tiburones/anatomía & histología , Animales , Microscopía Electrónica de Transmisión , Bulbo Olfatorio/ultraestructura , Corteza Olfatoria/citología , Nervio Olfatorio/ultraestructura , Vías Olfatorias/ultraestructura
13.
Brain Struct Funct ; 225(8): 2347-2375, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32870419

RESUMEN

The size (volume or mass) of the olfactory bulbs in relation to the whole brain has been used as a neuroanatomical proxy for olfactory capability in a range of vertebrates, including fishes. Here, we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test the value of this novel bioimaging technique for generating accurate measurements of the relative volume of the main olfactory brain areas (olfactory bulbs, peduncles, and telencephalon) and to describe the morphological organisation of the ascending olfactory pathway in model fish species from two taxa, the brownbanded bamboo shark Chiloscyllium punctatum and the common goldfish Carassius auratus. We also describe the arrangement of primary projections to the olfactory bulb and secondary projections to the telencephalon in both species. Our results identified substantially larger olfactory bulbs and telencephalon in C. punctatum compared to C. auratus (comprising approximately 5.2% vs. 1.8%, and 51.8% vs. 11.8% of the total brain volume, respectively), reflecting differences between taxa, but also possibly in the role of olfaction in the sensory ecology of these species. We identified segregated primary projections to the bulbs, associated with a compartmentalised olfactory bulb in C. punctatum, which supports previous findings in elasmobranch fishes. DiceCT imaging has been crucial for visualising differences in the morphological organisation of the olfactory system of both model species. We consider comparative neuroanatomical studies between representative species of both elasmobranch and teleost fish groups are fundamental to further our understanding of the evolution of the olfactory system in early vertebrates and the neural basis of olfactory abilities.


Asunto(s)
Bulbo Olfatorio/diagnóstico por imagen , Vías Olfatorias/diagnóstico por imagen , Olfato/fisiología , Telencéfalo/diagnóstico por imagen , Animales , Carpa Dorada , Tamaño de los Órganos , Tiburones , Especificidad de la Especie , Tomografía Computarizada por Rayos X/métodos
14.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32471849

RESUMEN

Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.


Asunto(s)
Yodo , Animales , Encéfalo/diagnóstico por imagen , Medios de Contraste , Cabeza , Tomografía Computarizada por Rayos X
15.
Am Nat ; 195(6): 1056-1069, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32469656

RESUMEN

Across vertebrates increased maternal investment (via increased pre- and postnatal provisioning) is associated with larger relative brain size, yet it remains unclear how brain organization is shaped by life history and ecology. Here, we tested whether maternal investment and ecological lifestyle are related to variation in brain size and organization across 100 chondrichthyans. We hypothesized that brain size and organization would vary with the level of maternal investment and habitat depth and complexity. We found that chondrichthyan brain organization varies along four main axes according to (1) absolute brain size, (2) relative diencephalon and mesencephalon size, (3) relative telencephalon and medulla size, and (4) relative cerebellum size. Increased maternal investment is associated with larger relative brain size, while ecological lifestyle is informative for variation between relative telencephalon and medulla size and relative cerebellum size after accounting for the independent effects of reproductive mode. Deepwater chondrichthyans generally provide low levels of yolk-only (lecithotrophic) maternal investment and have relatively small brains, predominantly composed of medulla (a major portion of the hindbrain), whereas matrotrophic chondrichthyans-which provide maternal provisioning beyond the initial yolk sac-found in coastal, reef, or shallow oceanic habitats have relatively large brains, predominantly composed of telencephalon (a major portion of the forebrain). We have demonstrated, for the first time, that both ecological lifestyle and maternal investment are independently associated with brain organization in a lineage with diverse life-history strategies and reproductive modes.


Asunto(s)
Evolución Biológica , Encéfalo/anatomía & histología , Tiburones/anatomía & histología , Rajidae/anatomía & histología , Animales , Ecosistema , Femenino , Océanos y Mares , Tamaño de los Órganos , Reproducción/fisiología , Tiburones/fisiología , Rajidae/fisiología
17.
Sci Rep ; 9(1): 10022, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296954

RESUMEN

In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (>3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle.


Asunto(s)
Cerebelo/anatomía & histología , Corteza Olfatoria/anatomía & histología , Tiburones/anatomía & histología , Tiburones/fisiología , Colículos Superiores/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Cerebelo/fisiología , Conducta Alimentaria/fisiología , Groenlandia , Imagen por Resonancia Magnética , Corteza Olfatoria/fisiología , Filogenia , Colículos Superiores/fisiología , Trastornos de la Visión/parasitología
18.
Sci Rep ; 9(1): 6924, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061394

RESUMEN

The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less 'inquisitive' behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa.


Asunto(s)
Conducta Animal , Tiburones , Sonido , Agua , Animales , Inmersión , Especificidad de la Especie , Natación
19.
PLoS One ; 14(3): e0212851, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856187

RESUMEN

Personal shark deterrents offer the potential of a non-lethal solution to protect individuals from negative interactions with sharks, but the claims of effectiveness of most deterrents are based on theory rather than robust testing of the devices themselves. Therefore, there is a clear need for thorough testing of commercially available shark deterrents to provide the public with information on their effectiveness. Using a modified stereo-camera system, we quantified behavioural interactions between Carcharodon carcharias (white sharks) and a baited target in the presence of a commercially available electric anklet shark deterrent, the Electronic Shark Defense System (ESDS). The stereo-camera system enabled accurate assessment of the behavioural responses of C. carcharias when approaching an ESDS. We found that the ESDS had limited meaningful effect on the behaviour of C. carcharias, with no significant reduction in the proportion of sharks interacting with the bait in the presence of the active device. At close proximity (< 15.5 cm), the active ESDS did show a significant reduction in the number of sharks biting the bait, but this was countered by an increase in other, less aggressive, interactions. The ESDS discharged at a frequency of 7.8 Hz every 5.1 s for 2.5 s, followed by an inactive interval of 2.6 s. As a result, many sharks may have encountered the device in its inactive state, resulting in a reduced behavioural response. Consequently, decreasing the inactive interval between pulses may improve the overall effectiveness of the device, but this would not improve the effective deterrent range of the device, which is primarily a factor of the voltage gradient rather than the stimulus frequency. In conclusion, given the very short effective range of the ESDS and its unreliable deterrent effect, combined with the fact that shark-bite incidents are very rare, it is unlikely that the current device would significantly reduce the risk of a negative interaction with C. carcharias.


Asunto(s)
Mordeduras y Picaduras/prevención & control , Conducta Predatoria , Tiburones/fisiología , Dispositivos Electrónicos Vestibles , Animales , Técnicas de Observación Conductual/métodos , Femenino , Humanos , Océano Índico , Actividad Motora/fisiología , Tecnología de Sensores Remotos/métodos , Sudáfrica , Grabación en Video/métodos
20.
Nat Ecol Evol ; 2(9): 1492-1500, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104752

RESUMEN

The allometric relationship between brain and body size among vertebrates is often considered a manifestation of evolutionary constraints. However, birds and mammals have undergone remarkable encephalization, in which brain size has increased without corresponding changes in body size. Here, we explore the hypothesis that a reduction of phenotypic integration between brain and body size has facilitated encephalization in birds and mammals. Using a large dataset comprising 20,213 specimens across 4,587 species of jawed vertebrates, we show that the among-species (evolutionary) brain-body allometries are remarkably constant, both across vertebrate classes and across taxonomic levels. Birds and mammals, however, are exceptional in that their within-species (static) allometries are shallower and more variable than in other vertebrates. These patterns are consistent with the idea that birds and mammals have reduced allometric constraints that are otherwise ubiquitous across jawed vertebrates. Further exploration of ontogenetic allometries in selected taxa of birds, fishes and mammals reveals that birds and mammals have extended the period of fetal brain growth compared to fishes. Based on these findings, we propose that avian and mammalian encephalization has been contingent on increased variability in brain growth patterns.


Asunto(s)
Aves/anatomía & histología , Tamaño Corporal , Encéfalo/anatomía & histología , Mamíferos/anatomía & histología , Animales , Evolución Biológica , Aves/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Mamíferos/crecimiento & desarrollo , Filogenia , Poecilia/anatomía & histología , Poecilia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...