Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Oncol ; 12: 812961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280731

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/µm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.

2.
Neoplasia ; 21(9): 849-862, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325708

RESUMEN

MicroRNAs (miRNAs) are short single-stranded RNAs, measuring 21 to 23 nucleotides in length and regulate gene expression at the post-transcriptional level through mRNA destabilization or repressing protein synthesis. Dysregulation of miRNAs can lead to tumorigenesis through changes in regulation of key cellular processes such as cell proliferation, cell survival, and apoptosis. miR-125a-5p has been implicated as a tumor suppressor miRNA in malignancies such as non-small cell lung cancer and colon cancer. However, the role of miR-125a-5p has not been fully investigated in head and neck squamous cell carcinoma (HNSCC). We performed microRNA microarray profiling of HNSCC tumor samples obtained from a prospective clinical trial evaluating the role of postoperative radiotherapy in head and neck cancer. We also mined through The Cancer Genome Atlas to evaluate expression and survival data. Biological experiments, including cell proliferation, flow cytometry, cell migration and invasion, clonogenic survival, and fluorescent microscopy, were conducted using HN5 and UM-SCC-22B cell lines. miR-125a-5p downregulation was associated with recurrent disease in a panel of high-risk HNSCC and then confirmed poor survival associated with low expression in HNSCC via the Cancer Genome Atlas, suggesting that miR-125a-5p acts as a tumor suppressor miRNA. We then demonstrated that miR-125a-5p regulates cell proliferation through cell cycle regulation at the G1/S transition. We also show that miR-125a-5p can alter cell migration and modulate sensitivity to ionizing radiation. Finally, we identified putative mRNA targets of miR-125a-5p, including ERBB2, EIF4EBP1, and TXNRD1, which support the tumor suppressive mechanism of miR-125a-5p. Functional validation of ERBB2 suggests that miR-125a-5p affects cell proliferation and sensitivity to ionizing radiation, in part, through ERBB2. Our data suggests that miR-125a-5p acts as a tumor suppressor miRNA, has potential as a diagnostic tool and may be a potential therapeutic target for the management and treatment of squamous cell carcinoma of the head and neck.


Asunto(s)
Biomarcadores de Tumor , Genes Supresores de Tumor , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , MicroARNs/genética , Regiones no Traducidas 3' , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias de Cabeza y Cuello/patología , Humanos , Recurrencia Local de Neoplasia , Pronóstico , Interferencia de ARN , ARN Mensajero/genética , Radiación Ionizante
3.
Med Dosim ; 42(2): 90-96, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28438431

RESUMEN

The purpose of this study was to commission and clinically test a robotic stereotactic delivery system (CyberKnife, Sunnyvale, CA) to treat early-stage glottic laryngeal cancer. We enrolled 15 patients with cTis-T2N0M0 carcinoma of the glottic larynx onto an institutional review board (IRB)-approved clinical trial. Stereotactic body radiotherapy (SBRT) plans prescribed 45 Gy/10 fractions to the involved hemilarynx. SBRT dosimetry was compared with (1) standard carotid-sparing laryngeal intensity-modulated radiation therapy (IMRT) and (2) selective hemilaryngeal IMRT. Our results demonstrate that SBRT plans improved sparing of the contralateral arytenoid (mean 20.0 Gy reduction, p <0.001), ipsilateral carotid Dmax (mean 20.6 Gy reduction, p <0.001), contralateral carotid Dmax (mean 28.1 Gy reduction, p <0.001), and thyroid Dmean (mean 15.0 Gy reduction, p <0.001) relative to carotid-sparing IMRT. SBRT also modestly improved dose sparing to the contralateral arytenoid (mean 4.8 Gy reduction, p = 0.13) and spinal cord Dmax (mean 4.9 Gy reduction, p = 0.015) relative to selective hemilaryngeal IMRT plans. This "phantom-to-clinic" feasibility study confirmed that hypofractionated SBRT treatment for early-stage laryngeal cancer can potentially spare dose to adjacent normal tissues relative to current IMRT standards. Clinical efficacy and toxicity correlates continue to be collected through an ongoing prospective trial.


Asunto(s)
Glotis/patología , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/radioterapia , Hipofraccionamiento de la Dosis de Radiación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Tratamientos Conservadores del Órgano/métodos , Fantasmas de Imagen , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
4.
Cancer Invest ; 35(1): 23-31, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27892728

RESUMEN

Nab-paclitaxel might impact efficacy of radiation for head and neck (H&N) cancer. Nab-paclitaxel, cisplatin, cetuximab, and radiation were evaluated in patients with locally advanced head and neck cancer in this phase I/II trial. Median follow-up was 24 months for 34 patients. The maximum tolerated dose of nab-paclitaxel was 20 mg/m2 with 20 mg/m2 cisplatin and 250 mg/m2 cetuximab. The 2-year progression-free survival (PFS) was 60% (95% confidence interval (CI) 0.42, 0.78), local control 71% (95% CI 0.55, 0.87), and overall survival 68% (95% CI 0.50, 0.86). This is the first study evaluating these agents with radiation in humans, with similar 2-year PFS as historic control.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia , Anciano , Albúminas/administración & dosificación , Albúminas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cetuximab/administración & dosificación , Cetuximab/uso terapéutico , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Terapia Combinada , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Análisis de Supervivencia , Resultado del Tratamiento
5.
Mol Cancer Ther ; 15(7): 1757-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27196777

RESUMEN

UNLABELLED: Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed. NAD(P)H: quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and ß-lapachone (ß-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. ß-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR. Immunohistochemical staining and Western blot assays were used to assess the expression levels of NQO1 in HNC cells and tumors. Forty-five percent of endogenous HNCs expressed elevated NQO1 levels. In addition, multiple HNC cell lines and tumors demonstrated elevated levels of NQO1 expression and activity and were tested for anticancer lethality and radiosensitization by ß-lap using long-term survival assays. The combination of nontoxic ß-lap doses and IR significantly enhanced NQO1-dependent tumor cell lethality, increased ROS, TUNEL-positive cells, DNA damage, NAD(+), and ATP consumption, and resulted in significant antitumor efficacy and prolonged survival in two xenograft murine HNC models, demonstrating ß-lap radiosensitization of HNCs through a NQO1-dependent mechanism. This translational study offers a potential biomarker-driven strategy using NQO1 expression to select tumors susceptible to ß-lap-induced radiosensitization. Mol Cancer Ther; 15(7); 1757-67. ©2016 AACR.


Asunto(s)
Expresión Génica , Neoplasias de Cabeza y Cuello/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Tolerancia a Radiación/genética , Radiación Ionizante , Adenosina Trifosfato/metabolismo , Animales , Catalasa/genética , Catalasa/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Modelos Animales de Enfermedad , Activación Enzimática , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Especies Reactivas de Oxígeno/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Comput Biol ; 22(12): 1075-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26402258

RESUMEN

Driver mutations propel oncogenesis and occur much less frequently than passenger mutations. The need for automatic and accurate identification of driver mutations has increased dramatically with the exponential growth of mutation data. Current computational solutions to identify driver mutations rely on sequence homology. Here we construct a machine learning-based framework that does not rely on sequence homology or domain knowledge to predict driver missense mutations. A windowing approach to represent the local environment of the sequence around the mutation point as a mutation sample is applied, followed by extraction of three sequence-level features from each sample. After selecting the most significant features, the support vector machine and multimodal fusion strategies are employed to give final predictions. The proposed framework achieves relatively high performance and outperforms current state-of-the-art algorithms. The ease of deploying the proposed framework and the relatively accurate performance make this solution applicable to large-scale mutation data analyses.


Asunto(s)
Genómica/métodos , Modelos Genéticos , Mutación Missense , Neoplasias/genética , Animales , Humanos , Máquina de Vectores de Soporte
7.
Am J Cancer Res ; 5(4): 1337-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26101701

RESUMEN

Standard combined modality therapies for aerodigestive tract malignancies have suboptimal outcomes, and targeting cancer-specific molecular pathways in combination with radiation could improve the therapeutic ratio. Dysregulation of epigenetic modulators such as histone deacetylases (HDACs), and developmental morphogens such as the hedgehog (HH) pathway have been implicated in aerodigestive tumor progression and metastasis. We hypothesized that simultaneous targeting of HDACs and the HH-pathway mediator Smoothened (Smo) represents an opportunity to overcome therapeutic resistance in these cancers. We evaluated the effects of the HDAC inhibitor SAHA and Smo inhibitor GDC-0449 with radiation in multiple aerodigestive cancer cell lines. Isobologram analyses showed that SAHA and GDC-0449 synergistically suppressed cancer cell proliferation in vitro. SAHA and GDC-0449 cooperatively enhanced G0/G1 cell cycle arrest which was associated with up-regulation of p21(waf). GDC-0449 prevented SAHA-induced up-regulation of Gli-1 and Gli-2. Both Smo and Ptc-1 expression was cooperatively suppressed by SAHA and GDC-0449. The combination of SAHA and GDC-0449 induced radiation sensitization with 2 Gy as determined by colony formation assays and cytogenetic analyses, which correlated with higher residual γ-H2AX and 53BP1 foci. In mouse tumor xenografts of the SqCC/Y1 cell line, SAHA and GDC-0449 delayed tumor growth longer and prolonged survival more than either agent alone. In summary, we have identified synergistic effect of HDAC and HH signaling for radiosensitization to improve therapeutic outcomes for aerodigestive malignancies.

8.
Cancer Res ; 75(7): 1527-36, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25634208

RESUMEN

TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias Pulmonares/genética , Proteína p53 Supresora de Tumor/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Genómica , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Mutación , Invasividad Neoplásica , Modelos de Riesgos Proporcionales , Transcriptoma
9.
Phys Med Biol ; 60(1): 101-16, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25479095

RESUMEN

The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Humanos , Intensificación de Imagen Radiográfica
10.
Stereotact Funct Neurosurg ; 92(3): 153-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24818638

RESUMEN

BACKGROUND: Skull base paragangliomas (SBP) are locally expansile tumors that can be treated with stereotactic radiotherapy with favorable results. This report describes the results of 31 patients with SBP treated with CyberKnife radiotherapy delivering a total dose of 25 Gray in five fractions. METHODS: All patients treated with five-fraction CyberKnife radiotherapy at a single institution were identified between 2007 and 2013. Tumor volumetric analyses were performed to assess responses to radiotherapy. RESULTS: Median follow-up was 24 months with a range of 4-78 months. Local control and overall survival were 100%. Of the 20 patients who presented with tinnitus, 12 reported improvement (60%), of whom 6 reported complete resolution. There was a 37.3% reduction in tumor volume among all patients (p = 0.16). On subset analysis of patients with ≥24 months of follow-up, tumor volume decreased 49% (p = 0.01). The rate of grade 1-2 toxicity was 19%, with no grade 3 or worse toxicity. CONCLUSION: A five-fraction CyberKnife-based stereotactic radiotherapy approach is safe and efficacious for the management for patients with SBP. Our findings suggest the potential use of this strategy as a definitive or salvage treatment option for SBP.


Asunto(s)
Tumor Glómico/cirugía , Neoplasias de Cabeza y Cuello/cirugía , Paraganglioma/cirugía , Radiocirugia/métodos , Carga Tumoral , Adulto , Anciano , Femenino , Tumor Glómico/diagnóstico , Neoplasias de Cabeza y Cuello/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Paraganglioma/diagnóstico , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
11.
J Appl Clin Med Phys ; 15(2): 4685, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24710458

RESUMEN

The purpose of this study is to describe the comprehensive commissioning process and initial clinical performance of the Vero linear accelerator, a new radiotherapy device recently installed at UT Southwestern Medical Center specifically developed for delivery of image-guided stereotactic ablative radiotherapy (SABR). The Vero system utilizes a ring gantry to integrate a beam delivery platform with image guidance systems. The ring is capable of rotating ± 60° about the vertical axis to facilitate noncoplanar beam arrangements ideal for SABR delivery. The beam delivery platform consists of a 6 MV C-band linac with a 60 leaf MLC projecting a maximum field size of 15 × 15 cm² at isocenter. The Vero planning and delivery systems support a range of treatment techniques, including fixed beam conformal, dynamic conformal arcs, fixed gantry IMRT in either SMLC (step-and-shoot) or DMLC (dynamic) delivery, and hybrid arcs, which combines dynamic conformal arcs and fixed beam IMRT delivery. The accelerator and treatment head are mounted on a gimbal mechanism that allows the linac and MLC to pivot in two dimensions for tumor tracking. Two orthogonal kV imaging subsystems built into the ring facilitate both stereoscopic and volumetric (CBCT) image guidance. The system is also equipped with an always-active electronic portal imaging device (EPID). We present our commissioning process and initial clinical experience focusing on SABR applications with the Vero, including: (1) beam data acquisition; (2) dosimetric commissioning of the treatment planning system, including evaluation of a Monte Carlo algorithm in a specially-designed anthropomorphic thorax phantom; (3) validation using the Radiological Physics Center thorax, head and neck (IMRT), and spine credentialing phantoms; (4) end-to-end evaluation of IGRT localization accuracy; (5) ongoing system performance, including isocenter stability; and (6) clinical SABR applications.


Asunto(s)
Aceleradores de Partículas/instrumentación , Radiocirugia/instrumentación , Radioterapia Guiada por Imagen/métodos , Algoritmos , Antropometría , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Método de Montecarlo , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Neoplasias de la Columna Vertebral/radioterapia , Rayos X
12.
Antioxid Redox Signal ; 21(2): 237-50, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24512128

RESUMEN

AIMS: ß-Lapachone (ß-lap), a novel radiosensitizer with potent antitumor efficacy alone, selectively kills solid cancers that over-express NAD(P)H: quinone oxidoreductase 1 (NQO1). Since breast or other solid cancers have heterogeneous NQO1 expression, therapies that reduce the resistance (e.g., NQO1(low)) of tumor cells will have significant clinical advantages. We tested whether NQO1-proficient (NQO1(+)) cells generated sufficient hydrogen peroxide (H2O2) after ß-lap treatment to elicit bystander effects, DNA damage, and cell death in neighboring NQO1(low) cells. RESULTS: ß-Lap showed NQO1-dependent efficacy against two triple-negative breast cancer (TNBC) xenografts. NQO1 expression variations in human breast cancer patient samples were noted, where ~60% cancers over-expressed NQO1, with little or no expression in associated normal tissue. Differential DNA damage and lethality were noted in NQO1(+) versus NQO1-deficient (NQO1(-)) TNBC cells and xenografts after ß-lap treatment. ß-Lap-treated NQO1(+) cells died by programmed necrosis, whereas co-cultured NQO1(-) TNBC cells exhibited DNA damage and caspase-dependent apoptosis. NQO1 inhibition (dicoumarol) or H2O2 scavenging (catalase [CAT]) blocked all responses. Only NQO1(-) cells neighboring NQO1(+) TNBC cells responded to ß-lap in vitro, and bystander effects correlated well with H2O2 diffusion. Bystander effects in NQO1(-) cells in vivo within mixed 50:50 co-cultured xenografts were dramatic and depended on NQO1(+) cells. However, normal human cells in vitro or in vivo did not show bystander effects, due to elevated endogenous CAT levels. Innovation and Conclusions: NQO1-dependent bystander effects elicited by NQO1 bioactivatable drugs (ß-lap or deoxynyboquinone [DNQ]) likely contribute to their efficacies, killing NQO1(+) solid cancer cells and eliminating surrounding heterogeneous NQO1(low) cancer cells. Normal cells/tissue are protected by low NQO1:CAT ratios.


Asunto(s)
Efecto Espectador/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Quinonas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , NAD(P)H Deshidrogenasa (Quinona)/deficiencia , NAD(P)H Deshidrogenasa (Quinona)/genética , Oxidación-Reducción/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Radiat Res ; 181(1): 1-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24320053

RESUMEN

The p53-binding protein 1 (53BP1) is a well-known DNA damage response (DDR) factor, which is recruited to nuclear structures at the site of DNA damage and forms readily visualized ionizing radiation (IR) induced foci. Depletion of 53BP1 results in cell cycle arrest in G2/M phase as well as genomic instability in human as well as mouse cells. Within the DNA damage response mechanism, 53BP1 is classified as an adaptor/mediator, required for processing of the DNA damage response signal and as a platform for recruitment of other repair factors. More recently, specific 53BP1 contributions to DSB repair pathway choice have been recognized and are being characterized. In this review, we have summarized recent advances in understanding the role of 53BP1 in regulating DNA DSBs repair pathway choice, variable diversity joining [V(D)J] recombination and class-switch recombination (CSR).


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Recombinación V(D)J
14.
Phys Med Biol ; 58(6): 1889-901, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23442596

RESUMEN

In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto-propagated contours on the treatment CT may contain relatively large errors, especially in low-contrast regions. A clinician's inspection and editing of the propagated contours are frequently needed. The edited contours are able to meet the clinical requirement for adaptive therapy; however, the DVF is still inaccurate and inconsistent with the edited contours. The purpose of this work is to develop a contour-guided deformable image registration (CG-DIR) algorithm to improve the accuracy and consistency of the DVF for adaptive radiotherapy. Incorporation of the edited contours into the registration algorithm is realized by regularizing the objective function of the original demons algorithm with a term of intensity matching between the delineated structures set pairs. The CG-DIR algorithm is implemented on computer graphics processing units (GPUs) by following the original GPU-based demons algorithm computation framework (Gu et al 2010 Phys Med Biol. 55 207-219). The performance of CG-DIR is evaluated on five clinical head-and-neck and one pelvic cancer patient data. It is found that compared with the original demons, CG-DIR improves the accuracy and consistency of the DVF, while retaining similar high computational efficiency.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Gráficos por Computador , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Neoplasias Pélvicas/diagnóstico por imagen , Neoplasias Pélvicas/radioterapia , Tomografía Computarizada por Rayos X
15.
Artículo en Inglés | MEDLINE | ID: mdl-24407303

RESUMEN

With the rapid development of next generation sequencing technology, the amount of biological sequence data of the cancer genome increases exponentially, which calls for efficient and effective algorithms that may identify patterns hidden underneath the raw data that may distinguish cancer Achilles' heels. From a signal processing point of view, biological units of information, including DNA and protein sequences, have been viewed as one-dimensional signals. Therefore, researchers have been applying signal processing techniques to mine the potentially significant patterns within these sequences. More specifically, in recent years, wavelet transforms have become an important mathematical analysis tool, with a wide and ever increasing range of applications. The versatility of wavelet analytic techniques has forged new interdisciplinary bounds by offering common solutions to apparently diverse problems and providing a new unifying perspective on problems of cancer genome research. In this paper, we provide a survey of how wavelet analysis has been applied to cancer bioinformatics questions. Specifically, we discuss several approaches of representing the biological sequence data numerically and methods of using wavelet analysis on the numerical sequences.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Neoplasias/diagnóstico , Neoplasias/genética , Análisis de Ondículas , Algoritmos , Secuencias de Aminoácidos , Aminoácidos/química , Dosificación de Gen , Humanos , Cómputos Matemáticos , Modelos Teóricos , Mutación , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN , Procesamiento de Señales Asistido por Computador
16.
Cancer Biol Ther ; 13(14): 1376-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22986231

RESUMEN

Advanced non-small lung cancer (NSCLC) remains almost uniformly lethal with marginal long-term survival despite efforts to target specific oncogenic addiction pathways that may drive these tumors with small molecularly targeted agents and biologics. The EML4-ALK fusion gene encodes a chimeric tyrosine kinase that activates the Ras signaling pathway, and this fusion protein is found in approximately 5% of NSCLC. Targeting EML4-ALK with Crizotinib in this subset of NSCLC has documented therapeutic efficacy, but the vast majority of patients eventually develop recurrent disease that is often refractory to further treatments. We present the clinicopathologic features of three patients with metastatic NSCLC harboring the EML4-ALK translocation that developed isolated central nervous system (CNS) metastases in the presence of good disease control elsewhere in the body. These cases suggest a differential response of NSCLC to Crizotinib in the brain in comparison to other sites of disease, and are consistent with a previous report of poor CNS penetration of Crizotinib. Results of ongoing clinical trials will clarify whether the CNS is a major sanctuary site for EML4-ALK positive NSCLC being treated with Crizotinib. While understanding molecular mechanisms of resistance is critical to overcome therapeutic resistance, understanding physiologic mechanisms of resistance through analyzing anatomic patterns of failure may be equally crucial to improve long-term survival for patients with EML4-ALK translocation positive NSCLC.


Asunto(s)
Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Fusión Oncogénica/efectos de los fármacos , Proteínas de Fusión Oncogénica/metabolismo , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Adulto , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/genética , Crizotinib , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Pulmonares/genética , Persona de Mediana Edad , Terapia Molecular Dirigida , Proteínas de Fusión Oncogénica/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Translocación Genética
17.
Cancer Discov ; 2(9): 798-811, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22961666

RESUMEN

UNLABELLED: Small cell lung cancer (SCLC) is an aggressive malignancy distinct from non-small cell lung cancer (NSCLC) in its metastatic potential and treatment response. Using an integrative proteomic and transcriptomic analysis, we investigated molecular differences contributing to the distinct clinical behavior of SCLCs and NSCLCs. SCLCs showed lower levels of several receptor tyrosine kinases and decreased activation of phosphoinositide 3-kinase (PI3K) and Ras/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) pathways but significantly increased levels of E2F1-regulated factors including enhancer of zeste homolog 2 (EZH2), thymidylate synthase, apoptosis mediators, and DNA repair proteins. In addition, PARP1, a DNA repair protein and E2F1 co-activator, was highly expressed at the mRNA and protein levels in SCLCs. SCLC growth was inhibited by PARP1 and EZH2 knockdown. Furthermore, SCLC was significantly more sensitive to PARP inhibitors than were NSCLCs, and PARP inhibition downregulated key components of the DNA repair machinery and enhanced the efficacy of chemotherapy. SIGNIFICANCE: SCLC is a highly lethal cancer with a 5-year survival rate of less than 10%. To date, no molecularly targeted agents have prolonged survival in patients with SCLCs. As a step toward identifying new targets, we systematically profiled SCLCs with a focus on therapeutically relevant signaling pathways. Our data reveal fundamental differences in the patterns of pathway activation in SCLCs and NSCLCs and identify several potential therapeutic targets for SCLCs, including PARP1 and EZH2. On the basis of these results, clinical studies evaluating PARP and EZH2 inhibition, together with chemotherapy or other agents, warrant further investigation.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteómica/métodos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Indoles/farmacología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Fosfatidilinositol 3-Quinasas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteoma/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Recombinasa Rad51/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Serina-Treonina Quinasas TOR/metabolismo
18.
Int J Radiat Oncol Biol Phys ; 82(4): 1445-53, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21940113

RESUMEN

PURPOSE: To provide historical background on the development and initial studies of the gynecological (gyn) applicators developed by Dr. Gilbert H. Fletcher, a radiation oncologist and chairperson from 1948 to 1981 of the department at the M.D. Anderson Hospital (MDAH) for Cancer Research in Houston, TX, and to acknowledge the previously unrecognized contribution that Dr. Leonard G. Grimmett, a radiation physicist and chairperson from 1949 to 1951 of the physics department at MDAH, made to the development of the gynecological applicators. METHODS AND MATERIALS: We reviewed archival materials from the Historical Resource Center and from the Department of Radiation Physics at The University of Texas M. D. Anderson Cancer Center, as well as contemporary published papers, to trace the history of the applicators. CONCLUSIONS: Dr. Fletcher's work was influenced by the work on gynecologic applicators in the 1940s in Europe, especially work done at the Royal Cancer Hospital in London. Those efforts influenced not only Dr. Fletcher's approach to the design of the applicators but also the methods used to perform in vivo measurements and determine the dose distribution. Much of the initial development of the dosimetry techniques and measurements at MDAH were carried out by Dr. Grimmett.


Asunto(s)
Braquiterapia/historia , Instituciones Oncológicas/historia , Neoplasias del Cuello Uterino/historia , Braquiterapia/instrumentación , Diseño de Equipo/historia , Femenino , Ginecología/historia , Ginecología/instrumentación , Historia del Siglo XX , Humanos , Texas , Neoplasias del Cuello Uterino/radioterapia
19.
Clin Cancer Res ; 18(1): 290-300, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22090360

RESUMEN

PURPOSE: Mortality of patients with head and neck squamous cell carcinoma (HNSCC) is primarily driven by tumor cell radioresistance leading to locoregional recurrence (LRR). In this study, we use a classification of TP53 mutation (disruptive vs. nondisruptive) and examine impact on clinical outcomes and radiation sensitivity. EXPERIMENTAL DESIGN: Seventy-four patients with HNSCC treated with surgery and postoperative radiation and 38 HNSCC cell lines were assembled; for each, TP53 was sequenced and the in vitro radioresistance measured using clonogenic assays. p53 protein expression was inhibited using short hairpin RNA (shRNA) and overexpressed using a retrovirus. Radiation-induced apoptosis, mitotic cell death, senescence, and reactive oxygen species (ROS) assays were carried out. The effect of the drug metformin on overcoming mutant p53-associated radiation resistance was examined in vitro as well as in vivo, using an orthotopic xenograft model. RESULTS: Mutant TP53 alone was not predictive of LRR; however, disruptive TP53 mutation strongly predicted LRR (P = 0.03). Cell lines with disruptive mutations were significantly more radioresistant (P < 0.05). Expression of disruptive TP53 mutations significantly decreased radiation-induced senescence, as measured by SA-ß-gal staining, p21 expression, and release of ROS. The mitochondrial agent metformin potentiated the effects of radiation in the presence of a disruptive TP53 mutation partially via senescence. Examination of our patient cohort showed that LRR was decreased in patients taking metformin. CONCLUSIONS: Disruptive TP53 mutations in HNSCC tumors predicts for LRR, because of increased radioresistance via the inhibition of senescence. Metformin can serve as a radiosensitizer for HNSCC with disruptive TP53, presaging the possibility of personalizing HNSCC treatment.


Asunto(s)
Envejecimiento/efectos de la radiación , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Mutación/genética , Recurrencia Local de Neoplasia/diagnóstico , Tolerancia a Radiación/genética , Proteína p53 Supresora de Tumor/genética , Envejecimiento/genética , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Western Blotting , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/radioterapia , Técnica del Anticuerpo Fluorescente , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Técnicas para Inmunoenzimas , Ratones , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia , Insuficiencia del Tratamiento , Células Tumorales Cultivadas
20.
Genes Cancer ; 2(2): 120-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21779485

RESUMEN

The 5-year survival rate is very low when breast cancer becomes metastatic. The metastatic process is governed by a network of molecules of which SLUG is known to play a major role as a regulator of epithelial-to-mesenchymal transition (EMT). Prostate-derived ETS factor (PDEF) has been proposed as a tumor suppressor, possibly through inhibition of invasion and metastasis; therefore, understanding the mechanism of PDEF regulation may help to better understand its role in breast cancer progression. This study shows for the first time that the transcription factor SLUG is a direct target of PDEF in breast cancer. We show that the expression of PDEF is able to suppress/dampen EMT through the negative regulation of SLUG. In addition, we show that PDEF is also able to regulate downstream targets of SLUG, namely E-cadherin, in both SLUG-dependent and -independent manners, suggesting a critical role for PDEF in regulating EMT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...