Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462944

RESUMEN

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Asunto(s)
Histiocitosis , Receptor Toll-Like 7 , Animales , Ratones , Citocinas/genética , Histiocitosis/genética , Mutación/genética , Nucleósidos , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/genética
2.
Mol Psychiatry ; 27(3): 1694-1703, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997193

RESUMEN

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.


Asunto(s)
Bombesina , Miedo , Amígdala del Cerebelo/metabolismo , Animales , Bombesina/metabolismo , Bombesina/farmacología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Mamíferos/metabolismo , Ratones , Ratones Noqueados
3.
Am J Primatol ; 84(10): e23343, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762313

RESUMEN

Environmental enrichment is essential for the well-being of zoo animals. Recent advances in sensor and video technologies may contribute to improvements in enrichment in terms of their flexibilities and time constraints. The purpose of this study was to investigate whether interactive movie art can be used as a form of environmental enrichment. We implemented interactive movies designed by a professional artist, a visual art aiming to reflect naturalistic forest habitat, in an indoor chimpanzee enclosure at Kyoto City Zoo in Japan. Motion-tracking sensors embedded in buoys were installed at several locations around the indoor enclosure; the chimpanzees could change the movie contents by physically interacting with these objects. We recorded behaviors by observing entire troop of chimpanzees (six) between March 16 and 20, 2020 (control condition), then recorded behaviors when the interactive movie was presented (experimental condition) between March 21 and 29, 2020. Behaviors were recorded via direct observations and video recordings to examine any changes after the installation of interactive art. The chimpanzees spent more time in the indoor enclosures during the experimental condition than during the control condition. Activity budgets did not change substantially during the study period. There was no evidence of habituation to the movie during the study period. Three chimpanzees, including two young chimpanzees, interacted with the movie more frequently than the others; these young chimpanzees occasionally showed playful expressions when interacting with the movie and exhibited different reactivities to the movie scenes. These results demonstrate, first, that the interactive art did not negatively affect chimpanzee behavior, and second, that some of the chimpanzees indeed showed positive responses to the art. This study, therefore, introduces a novel possibility for environmental enrichment in zoos, involving a collaboration between science and art.


Asunto(s)
Animales de Zoológico , Pan troglodytes , Animales , Animales de Zoológico/fisiología , Conducta Animal , Bosques , Pan troglodytes/fisiología , Proyectos Piloto , Grabación en Video
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663724

RESUMEN

Although it is held that proinflammatory changes precede the onset of breast cancer, the underlying mechanisms remain obscure. Here, we demonstrate that FRS2ß, an adaptor protein expressed in a small subset of epithelial cells, triggers the proinflammatory changes that induce stroma in premalignant mammary tissues and is responsible for the disease onset. FRS2ß deficiency in mouse mammary tumor virus (MMTV)-ErbB2 mice markedly attenuated tumorigenesis. Importantly, tumor cells derived from MMTV-ErbB2 mice failed to generate tumors when grafted in the FRS2ß-deficient premalignant tissues. We found that colocalization of FRS2ß and the NEMO subunit of the IκB kinase complex in early endosomes led to activation of nuclear factor-κB (NF-κB), a master regulator of inflammation. Moreover, inhibition of the activities of the NF-κB-induced cytokines, CXC chemokine ligand 12 and insulin-like growth factor 1, abrogated tumorigenesis. Human breast cancer tissues that express higher levels of FRS2ß contain more stroma. The elucidation of the FRS2ß-NF-κB axis uncovers a molecular link between the proinflammatory changes and the disease onset.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Neoplasias Mamarias Experimentales/etiología , Neoplasias Mamarias Experimentales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Neoplasias de la Mama/inmunología , Carcinogénesis , Citocinas/metabolismo , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Virus del Tumor Mamario del Ratón , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Embarazo , Receptor ErbB-2/metabolismo , Infecciones por Retroviridae , Microambiente Tumoral/inmunología , Infecciones Tumorales por Virus
5.
Int Immunol ; 33(9): 479-490, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34161582

RESUMEN

RNase T2, a ubiquitously expressed RNase, degrades RNAs in the endosomal compartments. RNA sensors, double-stranded RNA (dsRNA)-sensing Toll-like receptor 3 (TLR3) and single-stranded RNA (ssRNA)-sensing TLR7, are localized in the endosomal compartment in mouse macrophages. We here studied the role of RNase T2 in TLR3 and TLR7 responses in macrophages. Macrophages expressed RNase T2 and a member of the RNase A family RNase 4. RNase T2 was also expressed in plasmacytoid and conventional dendritic cells. Treatment with dsRNAs or type I interferon (IFN) up-regulated expression of RNase T2 but not RNase 4. RNase T2-deficiency in macrophages up-regulated TLR3 responses but impaired TLR7 responses. Mechanistically, RNase T2 degraded both dsRNAs and ssRNAs in vitro, and its mutants showed a positive correlation between RNA degradation and the rescue of altered TLR3 and TLR7 responses. H122A and C188R RNase T2 mutations, not H69A and E118V mutations, impaired both RNA degradation and the rescue of altered TLR3 and TLR7 responses. RNase T2 in bone marrow-derived macrophages was broadly distributed from early endosomes to lysosomes, and colocalized with the internalized TLR3 ligand poly(I:C). These results suggest that RNase T2-dependent RNA degradation in endosomes/lysosomes negatively and positively regulates TLR3 and TLR7 responses, respectively, in macrophages.


Asunto(s)
Endorribonucleasas/metabolismo , Endosomas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , ARN Bicatenario/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Cell Metab ; 32(5): 814-828.e6, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32949498

RESUMEN

Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Animales , Línea Celular , Senescencia Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Análisis de la Célula Individual
7.
Sci Rep ; 9(1): 19866, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882694

RESUMEN

The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.


Asunto(s)
Gravedad Alterada , Vuelo Espacial , Timo/metabolismo , Animales , Secuencia de Bases , Ensayo de Inmunoadsorción Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , RNA-Seq
8.
Sci Rep ; 9(1): 7654, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31114014

RESUMEN

Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Vuelo Espacial , Bazo/metabolismo , Transcriptoma , Animales , Regulación hacia Abajo , Eritropoyesis , Factor de Transcripción GATA1/genética , Ratones , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Ingravidez/efectos adversos
9.
Neuro Oncol ; 21(8): 993-1004, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-30976792

RESUMEN

BACKGROUND: Embryonal tumors in the central nervous system (CNS) are primary, aggressive, and poorly differentiated pediatric brain tumors. We identified forkhead box R2 (Foxr2) as an oncogene for medulloblastoma through a transposon-based insertional mutagenesis screen. Foxr2 translocation has been identified in a subset of human embryonal tumors of the CNS, designated as CNS neuroblastoma with Foxr2 activation (CNS NB-Foxr2); however, the in vivo functions of Foxr2 remain elusive. METHODS: We analyzed the effect of Foxr2 overexpression in the mouse brain by generating a transgenic strain that expresses Foxr2 in the entire brain under a transformation related protein 53 (Trp53)-deficient background. We performed histological analysis of tumors and characterized tumor-derived sphere-forming cells. We investigated gene expression profiles of tumor-derived cells. RESULTS: Foxr2 and Trp53 loss promoted tumor formation in the olfactory bulb (OB) and brainstem (BS). The tumors showed the common morphological features of small round blue cell tumors, exhibiting divergent, mainly neuronal and glial, patterns of differentiation, which corresponds to the definition of CNS-embryonal tumors. Importantly, all mice developed CNS-embryonal tumors. In the OB, early proliferative lesions consisting of oligodendrocyte transcription factor 2 (Olig2+) cells were observed, indicating that Foxr2 expression expanded Olig2+ cells in the OB. Tumor-derived cells formed spheres in vitro and induced tumors that recapitulated the parental tumor upon transplantation, indicating the presence of tumor-initiating cells. Gene expression profiling revealed that OB and BS tumor cells were enriched for the expression of the genes specific to CNS NB-Foxr2. CONCLUSION: Our data demonstrate that Foxr2 plays a causative role in the formation of CNS-embryonal tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Cerebelosas , Factores de Transcripción Forkhead/genética , Meduloblastoma , Neoplasias de Células Germinales y Embrionarias , Animales , Ratones
10.
J Pathol ; 249(1): 39-51, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30953353

RESUMEN

CREB-binding protein (CBP) and p300 have oncogenic properties; both co-operate with pro-oncogenic transcription factors downstream of Ras-Erk signalling to support cell proliferation. By contrast, missense, truncating and in-frame mutations of CBP/p300 are found frequently in some human cancers, including cutaneous squamous cell carcinomas that originate from epidermal keratinocytes. Data support that dysfunction of CBP/p300 contributes to keratinocyte hyperproliferation and tumourigenesis; however, the mechanism by which dysfunction of CBP/p300 affects keratinocytes is unknown. Here, we used mice harbouring keratinocyte-specific genetic modifications to examine the role of CBP/p300 in the epidermis. While a single copy of either Crebbp or Ep300 was necessary and sufficient for maintaining epidermal development, reduced expression of CBP/p300 strengthened the Ras-Erk signalling-induced hyperplastic phenotype of epidermal keratinocytes. Reduced CBP/p300 expression increased ligand-induced EGFR activity while decreasing basal expression of Mig6, a negative regulator of EGFR. A reduction in CBP/p300, in combination with increased Ras-Erk signalling, also promoted epidermal tumour formation in mice. Thus, our findings support that CBP/p300 acts as a tumour suppressor in epidermal keratinocytes by counteracting EGFR-Ras-Erk signalling. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Queratinocitos/enzimología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Cutáneas/enzimología , Animales , Proteína de Unión a CREB/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Proteína p300 Asociada a E1A/genética , Receptores ErbB/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Queratinocitos/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carga Tumoral
11.
Int Immunol ; 31(3): 157-166, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30476084

RESUMEN

The RNA-binding protein polypyrimidine tract-binding protein-1 (Ptbp1) binds to the pyrimidine-rich sequence of target RNA and controls gene expression via post-transcriptional regulation such as alternative splicing. Although Ptbp1 is highly expressed in B lymphocytes, its role to date is largely unknown. To clarify the role of Ptbp1 in B-cell development and function, we generated B-cell-specific Ptbp1-deficient (P1BKO) mice. B-cell development in the bone marrow, spleen and peritoneal cavity of the P1BKO mice was nearly normal. However, the P1BKO mice had significantly lower levels of natural antibodies in serum compared with those of the control mice. To investigate the effect of Ptbp1 deficiency on the immune response in vivo, we immunized the P1BKO mice with T-cell-independent type-2 (TI-2) antigen NP-Ficoll and T-cell-dependent (TD) antigen NP-CGG. We found that B-cell-specific Ptbp1 deficiency causes an immunodeficiency phenotype due to defective production of antibody against both TI-2 and TD antigen. This immunodeficiency was accompanied by impaired B-cell receptor (BCR)-mediated B-cell activation and plasmablast generation. These findings demonstrate that Ptbp1 is essential for the humoral immune response.


Asunto(s)
Formación de Anticuerpos/inmunología , Ribonucleoproteínas Nucleares Heterogéneas/inmunología , Proteína de Unión al Tracto de Polipirimidina/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Antígenos T-Independientes/inmunología , Linfocitos B/inmunología , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Linfocitos T/inmunología
12.
J Reprod Dev ; 65(1): 37-46, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30416150

RESUMEN

Polypyrimidine tract-binding protein 1 (PTBP1) is a highly conserved RNA-binding protein that is a well-known regulator of alternative splicing. Testicular tissue is one of the richest tissues with respect to the number of alternative splicing mRNA isoforms, but the molecular role(s) of PTBP1 in the regulation of these isoforms during spermatogenesis is still unclear. Here, we developed a germ cell-specific Ptbp1 conditional knockout (cKO) mouse model by using the Cre-loxP system to investigate the role of PTBP1 in spermatogenesis. Testis weight in Ptbp1 cKO mice was comparable to that in age-matched controls until 3 weeks of age; at ≥ 2 months old, testis weight was significantly lighter in cKO mice than in age-matched controls. Sperm count in Ptbp1 cKO mice at 2 months old was comparable to that in controls, whereas sperm count significantly decreased at 6 months old. Seminiferous tubules that exhibited degeneration in spermatogenic function were more evident in the 2-month-old Ptbp1 cKO mice than in controls. In addition, the early neonatal proliferation of spermatogonia, during postnatal days 1-5, was significantly retarded in Ptbp1 cKO mice compared with that in controls. An in vitro spermatogonia culture model (germline stem cells) revealed that hydroxytamoxifen-induced deletion of PTBP1 from germline stem cells caused severe proliferation arrest accompanied by an increase of apoptotic cell death. These data suggest that PTBP1 contributes to spermatogenesis through regulation of spermatogonia proliferation.


Asunto(s)
Proliferación Celular/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Espermatogénesis/fisiología , Espermatogonias/citología , Empalme Alternativo/fisiología , Animales , Apoptosis , Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Masculino , Ratones Noqueados , Tamaño de los Órganos , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Túbulos Seminíferos/fisiología , Recuento de Espermatozoides , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo
13.
Front Immunol ; 9: 1491, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997629

RESUMEN

Mouse toll-like receptor 9 (TLR9) is an endosomal sensor for single-stranded DNA. TLR9 is transported from the endoplasmic reticulum to endolysosomes by a multiple transmembrane protein Unc93 homolog B1, and proteolytically cleaved at its ectodomain. The structure of TLR9 and its biochemical analyses have shown that the proteolytic cleavage of TLR9 ectodomain enables TLR9-dimerization and TLR9 activation. However, the requirement of TLR9 cleavage in vivo has not been studied. We here show that the 13 amino acids deletion at the cleavage site made TLR9 resistant to proteolytic cleavage. The deletion mutation in the Tlr9 gene impaired TLR9-dependent cytokine production in conventional dendritic cells from the mutant mice. Not only in vitro, in vivo production of inflammatory cytokines (TNF-α and IL-12p40), chemokine (CCR5/RANTES), and type I interferon (IFN-α) induced by administration of TLR9 ligand was also impaired. These results demonstrate that the TLR9 cleavage is required for TLR9 responses in vivo.

14.
Biochem Biophys Res Commun ; 501(3): 745-750, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29753741

RESUMEN

Hindlimb unloading (HU) of rodents has been used as a ground-based model of spaceflight. In this study, we investigated the detailed impact of 14-day HU on the murine thymus. Thymic mass and cell number were significantly reduced after 14 days of hindlimb unloading, which was accompanied by an increment of plasma corticosterone. Although corticosterone reportedly causes selective apoptosis of CD4+CD8+ thymocytes (CD4+CD8+DPs) in mice treated with short-term HU, the reduction of thymocyte cellularity after the 14-day HU was not selective for CD4+CD8+DPs. In addition to the thymocyte reduction, the cellularity of thymic epithelial cells (TECs) was also reduced by the 14-day HU. Flow cytometric and RNA-sequencing analysis suggested that medullary TECs (mTECs) were preferentially reduced after HU. Moreover, immunohistochemical staining suggested that the 14-day HU caused a reduction of the mTECs expressing autoimmune regulator (Aire). Our data suggested that HU impacts both thymocytes and TECs. Consequently, these data imply that thymic T cell repertoire formation could be disturbed during spaceflight-like stress.


Asunto(s)
Células Epiteliales/citología , Suspensión Trasera/métodos , Timocitos/citología , Timo/fisiología , Factores de Transcripción/análisis , Animales , Antígenos CD4/análisis , Antígenos CD8/análisis , Recuento de Células , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Timo/citología , Factores de Tiempo , Proteína AIRE
15.
Congenit Anom (Kyoto) ; 57(1): 24-31, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27783871

RESUMEN

Foxc2, a member of the winged helix transcription factor family, is essential for eye, calvarial bone, cardiovascular and kidney development in mice. Nevertheless, how Foxc2-expressing cells and their descendent cells contribute to the development of these tissues and organs has not been elucidated. Here, we generated a Foxc2 knock-in (Foxc2CreERT2 ) mouse, in which administration of estrogen receptor antagonist tamoxifen induces nuclear translocation of Cre recombinase in Foxc2-expressing cells. By crossing with ROSA-LacZ reporter mice (Foxc2CreERT2 ; R26R), the fate of Foxc2 positive (Foxc2+ ) cells was analyzed through LacZ staining at various embryonic stages. We found Foxc2+ cell descendants in the supraoccipital and exoccipital bone in E18.5 embryos, when tamoxifen was administered at embryonic day (E) 8.5. Furthermore, Foxc2+ descendant cranial neural crest cells at E8-10 were restricted to the corneal mesenchyme, while Foxc2+ cell derived cardiac neural crest cells at E6-12 were found in the aorta, pulmonary trunk and valves, and endocardial cushions. Foxc2+ cell descendant contributions to the glomerular podocytes in the kidney were also observed following E6.5 tamoxifen treatment. Our results are consistent with previous reports of Foxc2 expression during early embryogenesis and the Foxc2CreERT2 mouse provides a tool to investigate spatiotemporal roles of Foxc2 and contributions of Foxc2+ expressing cells during mouse embryogenesis.


Asunto(s)
Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Animales , Linaje de la Célula/genética , Factores de Transcripción Forkhead/metabolismo , Orden Génico , Marcación de Gen/métodos , Sitios Genéticos , Vectores Genéticos/genética , Recombinación Homóloga , Inmunohistoquímica , Riñón/embriología , Riñón/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos
16.
Exp Eye Res ; 152: 34-42, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27639517

RESUMEN

5'TG3'-interacting factors (TGIFs) function as transcriptional repressors. Defects in TGIFs cause severe abnormalities in the developing brain and face. We found that Tgif2 was highly expressed in the mouse retina at early stages of development and examined its role in retinal development. Knockdown of Tgif2 in retinal explants at E14 using shRNA (sh-Tgif2) resulted in a decreased number of rod photoreceptors, whereas the number of cone photoreceptors increased without perturbation of cell proliferation and apoptosis. Concomitantly, the expression levels of photoreceptor-related genes were decreased in sh-Tgif2-introduced retinal explants. To examine the in vivo effects of Tgif2 overexpression, we generated Tgif2 conditional knock-in mice (Tgif2cKI). Although retinal cell differentiation, based on the relative proportions of retinal subtypes in the mature retina, was not affected, we observed abnormal localization of cone photoreceptor cell nuclei in the outer nuclear layer of the Tgif2cKI retina. However, electrical retinography suggest that cones in Tgif2cKI were functionally equivalent to those of wild mice. Our study revealed that Tgif2 participates in photoreceptor cell differentiation in the early stages of retinal development and regulates proper subretinal localization of the cone photoreceptors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Células Fotorreceptoras de Vertebrados/metabolismo , ARN/genética , Proteínas Represoras/genética , Retina/metabolismo , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/biosíntesis , Hibridación in Situ , Ratones , Ratones Transgénicos , Células Fotorreceptoras de Vertebrados/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/biosíntesis , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Técnicas de Cultivo de Tejidos
17.
Cell ; 166(5): 1147-1162.e15, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565344

RESUMEN

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.


Asunto(s)
Empalme Alternativo , Corteza Cerebral/embriología , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Animales , Centrosoma/metabolismo , Corteza Cerebral/anomalías , Corteza Cerebral/citología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exones , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN
18.
J Exp Med ; 213(8): 1441-58, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27401343

RESUMEN

Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-ß receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs.


Asunto(s)
Diferenciación Celular/inmunología , Células Epiteliales/inmunología , Regulación de la Expresión Génica/inmunología , Células Madre Embrionarias de Ratones/inmunología , Timo/inmunología , Factores de Transcripción/inmunología , Animales , Diferenciación Celular/genética , Células Epiteliales/citología , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Lectinas de Plantas/genética , Lectinas de Plantas/inmunología , Timo/citología , Factores de Transcripción/genética , Proteína AIRE
19.
Exp Anim ; 65(3): 231-44, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923756

RESUMEN

Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.


Asunto(s)
Técnicas Genéticas , Integrasas/genética , Ratones Transgénicos/genética , Recombinación Genética , Tamoxifeno , Transgenes , Animales , Antígenos Transformadores de Poliomavirus/genética , Fusión Génica , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Oncogenes/genética , Fenotipo , Activación Transcripcional
20.
Biol Reprod ; 94(4): 92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26984996

RESUMEN

The F-box and leucine-rich repeat protein 10 (Fbxl10) gene encodes a protein that catalyzes demethylation of H3K4 and H3K36. In this study, we show the important roles of FBXL10 as a histone demethylase in sustainable sperm production using mice in which the JmjC domain of Fbxl10 was deleted (Fbxl10(DeltaJ/DeltaJ)). In histological analysis, testis sections from 10-wk-old Fbxl10(DeltaJ/DeltaJ) mice appeared normal. On the other hand, testes from 7-mo-old Fbxl10(DeltaJ/DeltaJ) mice contained a greater ratio of seminiferous tubules exhibiting degeneration of spermatogenesis. Further analysis using an in vitro spermatogonia culture system, that is, germline stem cells (GSCs), revealed that Fbxl10(DeltaJ/DeltaJ) GSCs expressed a significantly higher level of P21 and P19 mRNA, cyclin-dependent kinase inhibitors and also known as cellular senescence markers, than wild-type (WT) GSCs. Furthermore, the ratio of Fbxl10(DeltaJ/DeltaJ) GSCs in G0/G1 phase was higher and the ratios in S and G2/M phases were lower than the corresponding ratios of WT GSCs, and the doubling speed of Fbxl10(DeltaJ/DeltaJ) GSCs was significantly slower than that of WT GSCs. In addition to these in vitro results, an in vivo study indicated that recovery of spermatogenesis after a transient reduction in the number of testicular germ cells by busulfan treatment was significantly slower in Fbxl10(DeltaJ/DeltaJ) mice than in WT mice. These data suggest that Fbxl10 plays important roles in long-term sustainable spermatogenesis via regulating cell cycle.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Espermatogénesis , Espermatogonias/fisiología , Animales , Busulfano , Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Masculino , Ratones Endogámicos C57BL , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...