Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 648: 36-43, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724558

RESUMEN

It is considered that sensory neurons extend into the tumor microenvironment (TME), which could be associated with tumor growth. However, little is known about how sensory signaling could promote tumor progression. In this study, chemogenetic activation of transient receptor potential vanilloid 1 (Trpv1)-positive sensory neurons (C-fibers) by the microinjection of AAV-hSyn-FLEX-hM3Dq-mCherry into the sciatic nerve dramatically increased tumor volume in tumor-bearing Trpv1-Cre mice. This activation in Trpv1::hM3Dq mice that had undergone tumor transplantation significantly reduced the population of tumor-infiltrating CD4+ T cells and increased the mRNA level of the M2-macrophage marker, CX3C motif chemokine receptor 1 (Cx3cr1) in immunosuppressive cells, such as tumor-associated macrophages (TAMs) and tumor-infiltrating monocytic myeloid-derived suppressor cells (M-MDSCs). Under these conditions, we found a significant correlation between the decreased expression of the M1-macrophage marker Tnf and tumor volume. These findings suggest that repeated activation of Trpv1-positive sensory neurons may facilitate tumor growth along with changes in tumor-infiltrating immune cells.


Asunto(s)
Antineoplásicos , Ratones , Animales , Antineoplásicos/metabolismo , Macrófagos/metabolismo , Células Receptoras Sensoriales/metabolismo , Línea Celular Tumoral , Trasplante de Neoplasias , Microambiente Tumoral , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
2.
Mol Brain ; 16(1): 18, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732798

RESUMEN

A growing body of evidence suggests that excess stress could aggravate tumor progression. The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the adaptation to stress because the hypothalamic-pituitary-adrenal (HPA) axis can be activated by inducing the release of corticotropin-releasing hormone (CRH) from the PVN. In this study, we used pharmacogenetic techniques to investigate whether concomitant activation of CRHPVN neurons could directly contribute to tumor progression. Tumor growth was significantly promoted by repeated activation of CRHPVN neurons, which was followed by an increase in the plasma levels of corticosterone. Consistent with these results, chronic administration of glucocorticoids induced tumor progression. Under the concomitant activation of CRHPVN neurons, the number of cytotoxic CD8+ T cells in the tumor microenvironment was dramatically decreased, and the mRNA expression levels of hypoxia inducible factor 1 subunit α (HIF1α), glucocorticoid receptor (GR) and Tsc22d3 were upregulated in inhibitory lymphocytes, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Furthermore, the mRNA levels of various kinds of driver molecules related to tumor progression and tumor metastasis were prominently elevated in cancer cells by concomitant activation of CRHPVN neurons. These findings suggest that repeated activation of the PVN-CRHergic system may aggravate tumor growth through a central-peripheral-associated tumor immune system.


Asunto(s)
Linfocitos T CD8-positivos , Núcleo Hipotalámico Paraventricular , Núcleo Hipotalámico Paraventricular/metabolismo , Linfocitos T CD8-positivos/metabolismo , Hipotálamo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Corticosterona , Neuronas/metabolismo , ARN Mensajero/metabolismo
3.
Mol Brain ; 16(1): 19, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737827

RESUMEN

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Dolor Crónico , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Dolor en Cáncer/complicaciones , Dolor Crónico/metabolismo , Calidad de Vida , Células Receptoras Sensoriales/metabolismo , Neoplasias Óseas/complicaciones
4.
Br J Cancer ; 127(8): 1565-1574, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35945243

RESUMEN

BACKGROUND: It has been considered that activation of peripheral µ-opioid receptors (MORs) induces side effects of opioids. In this study, we investigated the possible improvement of the immune system in tumour-bearing mice by systemic administration of the peripheral MOR antagonist naldemedine. METHODS: The inhibitory effect of naldemedine on MOR-mediated signalling was tested by cAMP inhibition and ß-arrestin recruitment assays using cultured cells. We assessed possible changes in tumour progression and the number of splenic lymphocytes in tumour-bearing mice under the repeated oral administration of naldemedine. RESULTS: Treatment with naldemedine produced a dose-dependent inhibition of both the decrease in the cAMP level and the increase in ß-arrestin recruitment induced by the MOR agonists. Repeated treatment with naldemedine at a dose that reversed the morphine-induced inhibition of gastrointestinal transport, but not antinociception, significantly decreased tumour volume and prolonged survival in tumour-transplanted mice. Naldemedine administration significantly decreased the increased expression of immune checkpoint-related genes and recovered the decreased level of toll-like receptor 4 in splenic lymphocytes in tumour-bearing mice. CONCLUSIONS: The blockade of peripheral MOR may induce an anti-tumour effect through the recovery of T-cell exhaustion and promotion of the tumour-killing system.


Asunto(s)
Neoplasias , Receptores Opioides mu , Analgésicos Opioides/efectos adversos , Animales , Sistema Inmunológico/metabolismo , Ratones , Derivados de la Morfina , Naltrexona/análogos & derivados , Neoplasias/inducido químicamente , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Receptor Toll-Like 4/metabolismo , beta-Arrestinas/metabolismo
5.
Mol Brain ; 15(1): 17, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172858

RESUMEN

Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.


Asunto(s)
Dopamina , Núcleo Accumbens , Animales , Linfocitos T CD8-positivos , Ratones , Ratones Transgénicos , Neuronas
6.
Biochem Biophys Res Commun ; 541: 22-29, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33461064

RESUMEN

Hypothalamic aging is considered to be critical for systemic aging, and the accumulation of "exhausted glial cells" in the hypothalamus may contribute to brain dysfunction. In this study, we used normal aging mice and investigated aging-specific transcriptional identities of microglia and astrocytes in the hypothalamus. We confirmed that normal aging promoted anxiety, induced impairment of motor coordination and reduced physical strength of muscle in mice. To investigate the senescence of hypothalamic glial cells, we isolated CD11b-positive microglia and ACSA-2-positive astrocytes from the hypothalamus of aged mice using magnetic-activated cell sorting (MACS). The mRNA level of p16INK4A was dramatically increased in the hypothalamic microglia of aged mice compared to young mice. Furthermore, the expression of programmed cell death 1 (PD-1) as well as A1-like astrocyte mediators in the hypothalamic microglia was dramatically induced by aging, indicating that normal aging may produce PD-1-enriched "exhausted microglia" in the hypothalamus. Furthermore, neuroinflammatory A1-like reactive astrocytes with a p16INK4A-positive senescent state were predominantly detected in the hypothalamus of aged mice. Exhausted microglia were also detected in the prefrontal cortex of aged mice, whereas astrocytic neuroinflammation was milder than that observed in the hypothalamus, even with p16INK4A-positive senescence. These results suggest that the production of PD-1-enriched exhausted and senescent microglia and neuroinflammatory A1-like reactive astrocytes in the hypothalamus may partly contribute to aging-related emotional and physical dyscoordination.


Asunto(s)
Envejecimiento/metabolismo , Astrocitos/metabolismo , Senescencia Celular , Hipotálamo/metabolismo , Microglía/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Envejecimiento/patología , Animales , Astrocitos/patología , Antígeno CD11b/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Emociones , Hipotálamo/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Desempeño Psicomotor , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...