Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39082615

RESUMEN

Therapeutic oligonucleotides such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA) are among the most remarkable modalities in modern medicine. ASOs and siRNA are composed of single- or double-stranded 15-25 mer synthesized oligonucleotides, which can be used to modulate gene expression. Liquid chromatography-mass spectrometry (LC/MS) is a necessary technique for the quality control of therapeutic oligonucleotides; it is used to evaluate the quantities of target oligonucleotides and their impurities. The widely applied oligonucleotide therapeutic quantitation method uses both ultraviolet (UV) absorbance and the MS signal intensity. Peaks separated from the main peak, which contains full-length product, are generally quantitated by UV. However, coeluting impurities, such as n - 1 shortmers, abasic oligonucleotides, and PS → PO (phosphorothiate to phosphodiester) oligonucleotides, are quantitated by MS. These coeluting impurities can also be comprised of various isomers with the same modification, thus increasing the difficulty in their separation and relative quantitation by LC/MS. It is possible that a specific isomer with a certain structural form induces toxicities. Therefore, characterization of each isomer separation is in high demand. In this study, we separated and characterized oligonucleotide isomers by employing a cyclic ion mobility mass spectrometry (cyclic IMS) system, which allows the separation of ions with the same m/z ratio based on their structural differences. Patisiran antisense and sense strands and their n - 1 and abasic isomers were used as sample sequences, and their ratio characterization was achieved by cyclic IMS. In addition, we evaluated the PS → PO conversion isomers of the antisense strand of givosiran, which originally contained four PS modification sites. The PS → PO isomers exhibited specific and distinguishable mobiligram patterns. We believe that cyclic IMS is a promising method for evaluating therapeutic oligonucleotide isomers.

2.
Sci Rep ; 14(1): 11540, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773176

RESUMEN

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Asunto(s)
Oligonucleótidos Antisentido , Receptor Toll-Like 9 , Receptor Toll-Like 9/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/química , Humanos , Islas de CpG , Animales , Ratones , Nucleótidos/metabolismo , Nucleótidos/química , Azúcares/metabolismo , Azúcares/química , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA