Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Clin Immunol ; : 110258, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762063

RESUMEN

Lymphocytes such as CD4+ T cells and B cells mainly infiltrate the salivary glands; however, the precise roles and targets of autoreactive T cells and autoantibodies in the pathogenesis of Sjögren's Syndrome (SS) remain unclear. This study was designed to clarify the role of autoreactive T cells and autoantibodies at the single-cell level involved in the development of sialadenitis. Infiltrated CD4+ T and B cells in the salivary glands of a mouse model resembling SS were single-cell-sorted, and their T cell receptor (TCR) and B cell receptor (BCR) sequences were analyzed. The predominant TCR and BCR clonotypes were reconstituted in vitro, and their pathogenicity was evaluated by transferring reconstituted TCR-expressing CD4+ T cells into Rag2-/- mice and administering recombinant IgG in vivo. The reconstitution of Th17 cells expressing TCR (#G) in Rag2-/- mice resulted in the infiltration of T cells into the salivary glands and development of sialadenitis, while an autoantibody (IgGr22) was observed to promote the proliferation of pathogenic T cells. IgGr22 specifically recognizes double-stranded RNA (dsRNA) and induces the activation of dendritic cells, thereby enhancing the expression of IFN signature and inflammatory genes. TCR#G recognizes antigens related to the gut microbiota. Antibiotic treatment severely reduces the activation of TCR#G-expressing Th17 cells and suppresses sialadenitis development. These data suggest that the anti-dsRNA antibodies and, TCR recognizing the gut microbiota involved in the development of sialadenitis like SS. Thus, our model provides a novel strategy for defining the roles of autoreactive TCR and autoantibodies in the development and pathogenesis of SS.

2.
Int Immunol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576231

RESUMEN

Autoimmune diseases often arise from conditions where the immune system is compromised. While lymphopenia-induced proliferation (LIP) is crucial for immune system development and maturation, it is also caused by environmental insult, such as infection and becomes a risk factor for autoimmunity in adults. We used Dsg3H1 TCR Transgenic mice, whose T cells are designed to recognize desmogrein-3, a skin antigen, to explore the impact of lymphopenia on post-thymic tolerance. Dsg3H1 mice are known to delete the most highly autoreactive T cells in thymus, and develop only subtle immune-mediated pathology in a steady state. However, we found that a transient lymphopenia by total body irradiation or cyclophosphamide, results in massive dermatitis in Dsg3H1 mice. The symptoms included expansion and development of self-reactive T cells, their differentiation into CD44 high IL-17 producing helper T cells, and severe neutrophilic inflammation. Repopulation of FOXP3+ T regulatory cells after lymphopenia normally occurred, suggesting escape of skin-reactive conventional T cells from control by regulatory T cell. Furthermore, we found that a depletion of the intestinal microbiota by antibiotics prevents the cyclophosphamide induced dermatitis, indicating roles of commensal intestinal microbiota in LIP and Th17 development in vivo. The current data suggested that post thymic tolerance of Dsg3H1 mice is established on a fragile balance in lymphoreplete immune environment and broken by interplay between lymphopenia and intestinal microbiota. The dynamic phenotypes observed in Dsg3H1 mice prompts a reevaluation of opportunistic lymphopenia together with microbiota as pivotal environmental factors, impacting individuals with genetic predispositions of autoimmune diseases.

3.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38626530

RESUMEN

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Asunto(s)
Axones , Colesterol , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Pez Cebra , Animales , Autofagia , Axones/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Neurogénesis , Neuronas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patología , Pez Cebra/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Clin Exp Nephrol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457030

RESUMEN

BACKGROUND: Dialysis patients are susceptible to developing severe coronavirus disease 2019 (COVID-19) due to hypoimmunity. Antibody titers against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) after the primary vaccinations are lower in hemodialysis (HD) patients than in healthy individuals. This study aimed to evaluate the effect of a SARS-CoV-2 booster vaccination in HD and peritoneal dialysis (PD) patients based on antibody titers and cellular and humoral immunity. METHODS: Participants of the control, HD, and PD groups were recruited from 12 facilities. SARS-CoV-2 antigen-specific cytokine and IgG-antibody levels were measured. Regulatory T cells and memory B cells were counted using flow cytometry at 6 months after primary vaccination with BNT162b2 and 3 weeks after the booster vaccination in HD and PD patients and compared with those of a control group. RESULTS: Booster vaccination significantly enhanced the levels of antibodies, cytokines, and memory B cells in three groups. The HD group showed significantly higher levels of IgG-antibodies, IL-1ß, IL-2, IL-4, IL-17, and memory B cells than those in the control group at 3 weeks after the booster dose. The PD group tended to show similar trends to HD patients but had similar levels of IgG-antibodies, cytokines, and memory B cells to the control group. CONCLUSIONS: HD patients had significantly stronger cellular and humoral immune responses than the control 3 weeks after the booster dose. Our findings will help in developing better COVID-19 vaccination strategies for HD and PD patients.

5.
Cell Rep ; 43(3): 113898, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451819

RESUMEN

T cell exhaustion impairs tumor immunity and contributes to resistance against immune checkpoint inhibitors. The nuclear receptor subfamily 4 group A (NR4a) family of nuclear receptors plays a crucial role in driving T cell exhaustion. In this study, we observe that NR4a1 and NR4a2 deficiency in CD8+ tumor-infiltrating lymphocytes (TILs) results in potent tumor eradication and exhibits not only reduced exhaustion characteristics but also an increase in the precursors/progenitors of exhausted T (Pre-Tex) cell fraction. Serial transfers of NR4a1-/-NR4a2-/-CD8+ TILs into tumor-bearing mice result in the expansion of TCF1+ (Tcf7+) stem-like Pre-Tex cells, whereas wild-type TILs are depleted upon secondary transfer. NR4a1/2-deficient CD8+ T cells express higher levels of stemness/memory-related genes and illustrate potent mitochondrial oxidative phosphorylation. Collectively, these findings suggest that inhibiting NR4a in tumors represents a potent immuno-oncotherapy strategy by increasing stem-like Pre-Tex cells and reducing exhaustion of CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Linfocitos Infiltrantes de Tumor , Neoplasias/genética , Microambiente Tumoral
6.
Inflamm Regen ; 44(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167255
7.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277730

RESUMEN

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Asunto(s)
Acidosis Tubular Renal , Acidosis , Pérdida Auditiva Sensorineural , Compuestos Organometálicos , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Pez Cebra/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Mutación , Acidosis Tubular Renal/genética , Células Ciliadas Auditivas/patología , Concentración de Iones de Hidrógeno , Cabello/metabolismo , Adenosina Trifosfato
8.
iScience ; 27(1): 108646, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226171

RESUMEN

IL-17-producing helper T (Th17) cells are long-lived and serve as central effector cells in chronic autoimmune diseases. The underlying mechanisms of Th17 persistence remain unclear. We demonstrated that abatacept, a CD28 antagonist, effectively prevented the development of skin disease in a Th17-dependent experimental autoimmune dermatitis model. Abatacept selectively inhibited the emergence of IL-7R-negative effector-phenotype T cells while allowing the survival and proliferation of IL-7R+ memory-phenotype cells. The surviving IL-7R+ Th17 cells expressed genes associated with alcohol/aldehyde detoxification and showed potential to transdifferentiate into IL-7R-negative effector cells. Inhibiting aldehyde dehydrogenase reduced IL-7R+ Th17 cells in vivo, independently of CD28, and exhibited additive effects when combined with abatacept. Our findings suggest that CD28 blockade prevents inflammation without eliminating persistent memory cells. These remaining memory cells can be targeted by other drugs, such as aldehyde dehydrogenase inhibitors, to limit their survival, thereby facilitating the treatment of chronic autoimmune diseases.

9.
Front Immunol ; 14: 1259246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860002

RESUMEN

Introduction: Hepatic stellate cells (HSC) become activated, differentiate to myofibroblasts and produce extracellular fibrillar matrix during liver fibrosis. The hepatic fibrogenic response is orchestrated by reciprocal interactions between HSCs and macrophages and their secreted products. SOCS1 can regulate several cytokines and growth factors implicated in liver fibrosis. Here we investigated the role of SOCS1 in regulating HSC activation. Methods: Mice lacking SOCS1 in HSCs (Socs1ΔHSC) were generated by crossing Socs1fl/fl and LratCre mice. Liver fibrosis was induced by carbon tetrachloride and evaluated by Sirius red staining, hydroxyproline content and immunostaining of myofibroblasts. Gene expression of pro-fibrogenic factors, cytokines, growth factors and chemokines were quantified by RT-qPCR. The phenotype and the numbers of intrahepatic leukocyte subsets were studied by flow cytometry. The impact of fibrosis on the development of diethyl nitrosamine-induced hepatocellular carcinoma was evaluated. Results: Socs1ΔHSC mice developed more severe liver fibrosis than control Socs1fl/fl mice that was characterized by increased collagen deposition and myofibroblast differentiation. Socs1ΔHSC mice showed a significant increase in the expression of smooth muscle actin, collagens, matrix metalloproteases, cytokines, growth factors and chemokines in the liver following fibrosis induction. The fibrotic livers of Socs1ΔHSC mice displayed heightened inflammatory cell infiltration with increased proportion and numbers of Ly6ChiCCR2+ pro-inflammatory macrophages. This macrophage population contained elevated numbers of CCR2+CX3CR1+ cells, suggesting impaired transition towards restorative macrophages. Fibrosis induction following exposure to diethyl nitrosamine resulted in more numerous and larger liver tumor nodules in Socs1ΔHSC mice than in Socs1fl/fl mice. Discussion: Our findings indicate that (i) SOCS1 expression in HSCs is a critical to control liver fibrosis and development of hepatocaellular carcinoma, and (ii) attenuation of HSC activation by SOCS1 regulates pro-inflammatory macrophage recruitment and differentiation during liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Nitrosaminas , Animales , Ratones , Quimiocinas/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo
10.
Cell Rep ; 42(8): 113005, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590143

RESUMEN

The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.


Asunto(s)
Encefalitis , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Animales , Ácido Quinurénico , Triptófano , Macrófagos
11.
Cell Rep ; 42(8): 112940, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37582370

RESUMEN

Interleukin (IL)-6 is abundantly expressed in the tumor microenvironment and is associated with poor patient outcomes. Here, we demonstrate that the deletion of the suppressor of cytokine signaling 3 (SOCS3) in T cells potentiates anti-tumor immune responses by conferring the anti-tumorigenic function of IL-6 in mouse and human models. In Socs3-deficient CD8+ T cells, IL-6 upregulates the expression of type I interferon (IFN)-regulated genes and enhances the anti-tumor effector function of T cells, while also modifying mitochondrial fitness to increase mitochondrial membrane potential and reactive oxygen species (ROS) levels and to promote metabolic glycolysis in the energy state. Furthermore, Socs3 deficiency reduces regulatory T cells and increases T helper 1 (Th1) cells. SOCS3 knockdown in human chimeric antigen receptor T (CAR-T) cells exhibits a strong anti-tumor response in humanized mice. Thus, genetic disruption of SOCS3 offers an avenue to improve the therapeutic efficacy of adoptive T cell therapy.

12.
Clin Exp Allergy ; 53(11): 1147-1161, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641429

RESUMEN

Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.


Asunto(s)
Antialérgicos , Eosinofilia , Hipersensibilidad , Humanos , Hipersensibilidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Citocinas/metabolismo , Inmunoglobulina E/metabolismo
13.
Vaccines (Basel) ; 11(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37515030

RESUMEN

Coronavirus disease 2019 (COVID-19) following primary immunization (breakthrough infection) has been reported in hemodialysis patients; however, their post-infection immune status remains unclear. We evaluated the humoral and cellular immunity of hemodialysis patients after breakthrough infection. Hemodialysis patients who had received primary immunization against COVID-19 at least six months prior to the study but developed mild/moderate COVID-19 before a booster dose (breakthrough infection group) and hemodialysis patients who were not infected with COVID-19 but received a booster dose (booster immunization group) were recruited. In both groups, SARS-CoV-2 antigen-specific cytokines and IgG levels were measured three weeks after infection or three weeks after receiving a booster dose. Memory T and B cells were also counted in the breakthrough infection group using flow cytometry three weeks after infection. Significantly higher SARS-CoV-2 antigen-specific IgG, IFN-γ, IL-5, TNF-α, and IL-6 levels occurred in the breakthrough infection group compared to the booster immunization group (p = 0.013, 0.039, 0.024, 0.017, and 0.039, respectively). The SARS-CoV-2 antigen-specific IgG and cytokine levels were not significantly different between the two groups. The breakthrough infection group had significantly higher percentages of central and effector memory T cells and regulatory T cells than the comparison group (p = 0.008, 0.031, and 0.026, respectively). Breakthrough infections may induce stronger cellular and humoral immune responses than booster immunizations in hemodialysis patients.

14.
J Immunol ; 211(5): 755-766, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417746

RESUMEN

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a proline-rich region in its C-terminal region. Our previous study demonstrated that STAP-2 positively regulates TCR signaling by associating with TCR-proximal CD3ζ ITAMs and the lymphocyte-specific protein tyrosine kinase. In this study, we identify the STAP-2 interacting regions of CD3ζ ITAMs and show that the STAP-2-derived synthetic peptide (iSP2) directly interacts with the ITAM sequence and blocks the interactions between STAP-2 and CD3ζ ITAMs. Cell-penetrating iSP2 was delivered into human and murine T cells. iSP2 suppressed cell proliferation and TCR-induced IL-2 production. Importantly, iSP2 treatment suppressed TCR-mediated activation of naive CD4+ T cells and decreased immune responses in CD4+ T cell-mediated experimental autoimmune encephalomyelitis. It is likely that iSP2 is a novel immunomodulatory tool that modulates STAP-2-mediated activation of TCR signaling and represses the progression of autoimmune diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad , Receptores de Antígenos de Linfocitos T/metabolismo , Fragmentos de Péptidos/farmacología
15.
Commun Biol ; 6(1): 500, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161050

RESUMEN

T cells play important roles in autoimmune diseases, but it remains unclear how to optimally manipulate them. We focused on the T cell immunoreceptor with Ig and ITIM domains (TIGIT), a coinhibitory molecule that regulates and is expressed in T cells. In autoimmune diseases, the association between TIGIT-expressing cells and pathogenesis and the function of human-TIGIT (hu-TIGIT) signalling modification have not been fully elucidated. Here we generated anti-hu-TIGIT agonistic monoclonal antibodies (mAbs) and generated hu-TIGIT knock-in mice to accurately evaluate the efficacy of mAb function. Our mAb suppressed the activation of CD4+ T cells, especially follicular helper T and peripheral helper T cells that highly expressed TIGIT, and enhanced the suppressive function of naïve regulatory T cells. These results indicate that our mAb has advantages in restoring the imbalance of T cells that are activated in autoimmune diseases and suggest potential clinical applications for anti-hu-TIGIT agonistic mAbs as therapeutic agents.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T Reguladores , Animales , Ratones , Enfermedades Autoinmunes/tratamiento farmacológico , Transducción de Señal , Anticuerpos Monoclonales/farmacología , Receptores Inmunológicos/genética
16.
Int Immunol ; 35(9): 403-421, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37227084

RESUMEN

The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Membrana Sinovial/metabolismo , Simulación por Computador , Fibroblastos/metabolismo
18.
Adv Immunol ; 157: 29-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37061287

RESUMEN

The immune system is deeply involved in autoimmune diseases of the central nervous system (CNS), such as multiple sclerosis, N-methyl-d-aspartate (NMDA) receptor encephalitis, and narcolepsy. Additionally, the immune system is involved in various brain diseases including cerebral infarction and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In particular, reports related to T cells are increasing. T cells may also play important roles in brain deterioration and dementia that occur with aging. Our understanding of the role of immune cells in the context of the brain has been greatly improved by the use of acute ischemic brain injury models. Additionally, similar neural damage and repair events are shown to occur in more chronic brain neurodegenerative brain diseases. In this review, we focus on the role of T cells, including CD4+ T cells, CD8+ T cells and regulatory T cells (Tregs) in cerebral infarction and neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Encefalitis , Encefalitis Infecciosa , Enfermedades Neurodegenerativas , Humanos , Linfocitos T CD8-positivos , Infarto Cerebral , Inflamación
19.
Nat Rev Neurosci ; 24(5): 299-312, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973481

RESUMEN

The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Neuroinmunomodulación , Encéfalo/metabolismo
20.
Cell Rep ; 42(4): 112302, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36989112

RESUMEN

Recent epigenome-wide studies suggest an association between blood DNA methylation and kidney function. However, the pathological importance remains unclear. Here, we show that the homing endonuclease I-PpoI-induced DNA double-strand breaks in kidney glomerular podocytes cause proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis with DNA methylation changes in blood cells as well as in podocytes. Single-cell RNA-sequencing analysis reveals an increase in cytotoxic CD8+ T cells with the activating/costimulatory receptor NKG2D in the kidneys, which exhibit a memory precursor effector cell phenotype, and the CD44high memory CD8+ T cells are also increased in the peripheral circulation. NKG2D blockade attenuates the renal phenotype caused by podocyte DNA damage. Blood methylome shows increased DNA methylation in binding sites for STAT1, a transcription factor contributing to CD8+ T cell homeostasis. Collectively, podocyte DNA damage alters the blood methylome, leading to changes in CD8+ T cells, which contribute to sustained renal injury in chronic kidney disease.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Humanos , Podocitos/metabolismo , Metilación de ADN/genética , Linfocitos T CD8-positivos/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Riñón/metabolismo , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Insuficiencia Renal Crónica/patología , Daño del ADN , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...