Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem. Phys. lipids ; 257: 105348, nov.2023. ilus
Artículo en Inglés | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1524856

RESUMEN

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40­70 % reduction, n = 9) or poor (3­33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Asunto(s)
Biomarcadores , Hiperlipoproteinemia Tipo II , Fosfatidilinositoles , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Lipidómica
2.
Mol Microbiol ; 120(6): 893-905, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864403

RESUMEN

In the yeast Saccharomyces cerevisiae, the absence of the pseudouridine synthase Pus3/Deg1, which modifies tRNA positions 38 and 39, results in increased lipid droplet (LD) content and translational defects. In addition, starvation-like transcriptome alterations and induced protein aggregation were observed. In this study, we show that the deg1 mutant increases specific misreading errors. This could lead to altered expression of the main regulators of neutral lipid synthesis which are the acetyl-CoA carboxylase (Acc1), an enzyme that catalyzes a key step in fatty acid synthesis, and its regulator, the Snf1/AMPK kinase. We demonstrate that upregulation of the neutral lipid content of LD in the deg1 mutant is achieved by a mechanism operating in parallel to the known Snf1/AMPK kinase-dependent phosphoregulation of Acc1. While in wild-type cells removal of the regulatory phosphorylation site (Ser-1157) in Acc1 results in strong upregulation of triacylglycerol (TG), but not steryl esters (SE), the deg1 mutation more specifically upregulates SE levels. In order to elucidate if other lipid species are affected, we compared the lipidomes of wild type and deg1 mutants, revealing multiple altered lipid species. In particular, in the exponential phase of growth, the deg1 mutant shows a reduction in the pool of phospholipids, indicating a compromised capacity to mobilize acyl-CoA from storage lipids. We conclude that Deg1 plays a key role in the coordination of lipid storage and mobilization, which in turn influences lipid homeostasis. The lipidomic effects in the deg1 mutant may be indirect outcomes of the activation of various stress responses resulting from protein aggregation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Quinasas de la Proteína-Quinasa Activada por el AMP , Lipidómica , Lípidos , Agregado de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Chem Phys Lipids ; 257: 105348, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827478

RESUMEN

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40-70 % reduction, n = 9) or poor (3-33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , LDL-Colesterol , Lipidómica , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Colesterol , Biomarcadores
4.
iScience ; 26(6): 106777, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37213234

RESUMEN

The retina is a notable tissue with high metabolic needs which relies on specialized vascular networks to protect the neural retina while maintaining constant supplies of oxygen, nutrients, and dietary essential fatty acids. Here we analyzed the lipidome of the mouse retina under healthy and pathological angiogenesis using the oxygen-induced retinopathy model. By matching lipid profiles to changes in mRNA transcriptome, we identified a lipid signature showing that pathological angiogenesis leads to intense lipid remodeling favoring pathways for neutral lipid synthesis, cholesterol import/export, and lipid droplet formation. Noteworthy, it also shows profound changes in pathways for long-chain fatty acid production, vital for retina homeostasis. The net result is accumulation of large quantities of mead acid, a marker of essential fatty acid deficiency, and a potential marker for retinopathy severity. Thus, our lipid signature might contribute to better understand diseases of the retina that lead to vision impairment or blindness.

5.
Clin Nutr ESPEN ; 51: 336-344, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36184225

RESUMEN

BACKGROUND & AIMS: Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS: Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS: After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS: These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.


Asunto(s)
Citrus sinensis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Biomarcadores , Ésteres del Colesterol , Citrus sinensis/metabolismo , Ácidos Grasos , Insulina , Resistencia a la Insulina/fisiología , Ácidos Linoleicos , Lipoproteínas LDL , Obesidad , Triglicéridos
6.
Clin Nutr ESPEN ; (51): 336-344, Oct. 2022.
Artículo en Inglés | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1400456

RESUMEN

BACKGROUND & AIMS: Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS: Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS: After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS: These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.


Asunto(s)
Animales , Resistencia a la Insulina/fisiología , Biomarcadores , Citrus sinensis/metabolismo , Diabetes Mellitus , Triglicéridos , Ácidos Linoleicos , Ésteres del Colesterol , Receptores de Lipoproteína , Ácidos Grasos , Obesidad
7.
Biochim Biophys Acta Bioenerg ; 1863(7): 148587, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780857

RESUMEN

Cardiolipin is the signature phospholipid of the mitochondrial inner membrane. It participates in shaping the inner membrane as well as in modulating the activity of many membrane-bound proteins. The acyl chain composition of cardiolipin is finely tuned post-biosynthesis depending on the surrounding phospholipids to produce mature or unsaturated cardiolipin. However, experimental evidence showing that immature and mature cardiolipin are functionally equivalents for mitochondria poses doubts on the relevance of cardiolipin remodeling. In this work, we studied the role of cardiolipin acyl chain composition in mitochondrial bioenergetics, including a detailed bioenergetic profile of yeast mitochondria. Cardiolipin acyl chains were modified by genetic and nutritional manipulation. We found that both the bioenergetic efficiency and osmotic stability of mitochondria are dependent on the unsaturation level of cardiolipin acyl chains. It is proposed that cardiolipin remodeling and, consequently, mature cardiolipins play an important role in mitochondrial inner membrane integrity and functionality.


Asunto(s)
Cardiolipinas , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
J Mol Graph Model ; 112: 108125, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101729

RESUMEN

The Carnitine Palmitoyltranferase I (CPT1) catalyzes the rate-limiting step of long-chain fatty acid (LCFA) mitochondrial ß-oxidation. The enzyme promotes the conjugation of LCFA with l-carnitine, which allows LCFA to enter the mitochondria matrix. The structural features involved in CPT1 and LCFA-CoA interactions have not been fully elucidated, mainly due to the absence of CPT1 crystallographic data. Previous studies reported important residues (Lys556, Lys560, and Lys561) crucial to the CPT1 mechanism. Nonetheless, these studies have not explored the LCFA bindings. Using molecular modeling strategies, we aimed to understand the conformational changes in CPT1 structure induced by LCFA-CoA. For this purpose, a tridimensional CPT1A model was built by homology modeling using CRAT protein (PBD:1t7q, resolution 1.8 Å) as a template. We simulated the CPT1 structure in the presence and absence of LCFA-CoA by molecular dynamics (MD). By applying a principal component analysis (PCA), two states of apostructure CPT1 based on CoA-Loop (688-711) were observed. In contrast, just one state was evidenced along with smaller conformational subspaces in ligand-complexed simulations using LCFA-CoA. The CoA moiety of ligands interacts with charged residues, namely Lys560, Lys556, Arg563, and Arg645. The frequency of interactions observed for each of these residues is <60% of simulation time, suggesting a dynamic profile of interactions in synergy with long-chain carbon interactions over α-I (478-492). Collectively, these features may be associated with the catalytic conformation of LCFA-CoA to CPT1a. Further calculations of free-energy for different fatty acids, such as alpha-linolenic (ALA), gamma-linolenic (GLA), and arachidonic (ARA) acids, yielded energy values ranging from -76.9 ± 15.9 to -68.5 ± 10.0 kcal mol-1. In conclusion, the present structural model and simulations provide molecular-level insights into LCFA-CoA and CPT1a interactions. These findings may help to further knowledge on the conformational changes of CPT1a induced by LCFA-CoA derivates.


Asunto(s)
Acilcoenzima A , Carnitina O-Palmitoiltransferasa , Carnitina , Carnitina O-Palmitoiltransferasa/química , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos , Ligandos , Oxidación-Reducción
9.
J. physiol. biochem ; 78(1): 283-294, feb. 2022.
Artículo en Inglés | IBECS | ID: ibc-215889

RESUMEN

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts. (AU)


Asunto(s)
Humanos , Restricción Calórica , Metabolómica , Cardiomegalia , Peróxido de Hidrógeno , Isoproterenol , Mitocondrias , Estrés Oxidativo
10.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35023023

RESUMEN

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Asunto(s)
Restricción Calórica , Lipidómica , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Humanos , Peróxido de Hidrógeno/metabolismo , Isoproterenol/metabolismo , Isoproterenol/toxicidad , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo
11.
J Nutr Biochem ; 97: 108809, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34192591

RESUMEN

Postprandial lipemia consists of changes in concentrations and composition of plasma lipids after food intake, commonly presented as increased levels of triglyceride-rich lipoproteins. Postprandial hypertriglyceridemia may also affect high-density lipoprotein (HDL) structure and function, resulting in a net decrease in HDL concentrations. Elevated triglycerides (TG) and reduced HDL levels have been positively associated with risk of cardiovascular diseases development. Here, we investigated the plasma lipidome composition of 12 clinically healthy, nonobese and young women in response to an acute high-caloric (1135 kcal) and high-fat (64 g) breakfast meal. For this purpose, we employed a detailed untargeted mass spectrometry-based lipidomic approach and data was obtained at four sampling points: fasting and 1, 3 and 5 h postprandial. Analysis of variance revealed 73 significantly altered lipid species between all sampling points. Nonetheless, two divergent subgroups have emerged at 5 h postprandial as a function of differential plasma lipidome responses, and were thereby designated slow and fast TG metabolizers. Late responses by slow TG metabolizers were associated with increased concentrations of several species of TG and phosphatidylinositol (PI). Lipidomic analysis of lipoprotein fractions at 5 h postprandial revealed higher TG and PI concentrations in HDL from slow relative to fast TG metabolizers, but not in apoB-containing fraction. These data indicate that modulations in HDL lipidome during prolonged postprandial lipemia may potentially impact HDL functions. A comprehensive characterization of plasma lipidome responses to acute metabolic challenges may contribute to a better understanding of diet/lifestyle regulation in the metabolism of lipid and glucose.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Lípidos/sangre , Comidas , Periodo Posprandial , Adulto , Ayuno , Femenino , Humanos , Lipidómica , Lipoproteínas/sangre , Lipoproteínas HDL/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Adulto Joven
12.
PLoS Negl Trop Dis ; 15(4): e0009388, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33930014

RESUMEN

The 2015-2016 Zika virus (ZIKV) outbreak in Brazil was remarkably linked to the incidence of microcephaly and other deleterious clinical manifestations, including eye abnormalities, in newborns. It is known that ZIKV targets the placenta, triggering an inflammatory profile that may cause placental insufficiency. Transplacental lipid transport is delicately regulated during pregnancy and deficiency on the delivery of lipids such as arachidonic and docosahexaenoic acids may lead to deficits in both brain and retina during fetal development. Here, plasma lipidome profiles of ZIKV exposed microcephalic and normocephalic newborns were compared to non-infected controls. Our results reveal major alterations in circulating lipids from both ZIKV exposed newborns with and without microcephaly relative to controls. In newborns with microcephaly, the plasma concentrations of hydroxyoctadecadienoic acid (HODE), primarily as 13-HODE isomer, derived from linoleic acid were higher as compared to normocephalic ZIKV exposed newborns and controls. Total HODE concentrations were also positively associated with levels of other oxidized lipids and several circulating free fatty acids in newborns, indicating a possible plasma lipidome signature of microcephaly. Moreover, higher concentrations of lysophosphatidylcholine in ZIKV exposed normocephalic newborns relative to controls suggest a potential disruption of polyunsaturated fatty acids transport across the blood-brain barrier of fetuses. The latter data is particularly important given the neurocognitive and neurodevelopmental abnormalities observed in follow-up studies involving children with antenatal ZIKV exposure, but normocephalic at birth. Taken together, our data reveal that plasma lipidome alterations associated with antenatal exposure to ZIKV could contribute to identification and monitoring of the wide spectrum of clinical phenotypes at birth and further, during childhood.


Asunto(s)
Anomalías del Ojo/epidemiología , Lípidos/sangre , Microcefalia/epidemiología , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/congénito , Brasil/epidemiología , Brotes de Enfermedades , Anomalías del Ojo/sangre , Anomalías del Ojo/virología , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Enfermedades del Recién Nacido/epidemiología , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Masculino , Microcefalia/sangre , Microcefalia/virología , Embarazo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/sangre , Infección por el Virus Zika/transmisión
13.
Langmuir ; 36(48): 14514-14529, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33210931

RESUMEN

Two commercial exogenous pulmonary surfactants, Curosurf and Survanta, are investigated. Their thermotropic behavior and associated structural changes for the samples in bulk are characterized and described. For Survanta, the obtained results of differential scanning calorimetry showed a thermogram with three peaks on heating and only a single peak on cooling. Curosurf on the other hand, presents calorimetric thermograms with only one peak in both the heating and cooling scans. This distinct thermotropic behavior between the two pulmonary surfactants, a consequence of their particular compositions, is associated with structural changes that were evaluated by simultaneous small- and wide-angle X-ray scattering experiments with in situ temperature variation. Interestingly, for temperatures below ∼35 °C for Curosurf and ∼53 °C for Survanta, the scattering data indicated the coexistence of two lamellar phases with different carbon chain organizations. For temperatures above these limits, the coexistence of phases disappears, giving rise to a fluid phase in both pulmonary surfactants, with multilamelar vesicles for Curosurf and unilamellar vesicles for Survanta. This process is quasi-reversible under cooling, and advanced data analysis for the scattering data indicated differences in the structural and elastic properties of the pulmonary surfactants. The detailed and systematic investigation shown in this work expands on the knowledge of the structure and thermodynamic behavior of Curosurf and Survanta, being relevant from both physiological and biophysical perspectives and also providing a basis for further studies on other types of pulmonary surfactants.


Asunto(s)
Surfactantes Pulmonares , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Pulmón , Tensoactivos , Porcinos , Termodinámica
14.
FEMS Yeast Res ; 19(6)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425576

RESUMEN

We sought to investigate how far the growth of Saccharomyces cerevisiae under full anaerobiosis is dependent on the widely used anaerobic growth factors (AGF) ergosterol and oleic acid. A continuous cultivation setup was employed and, even forcing ultrapure N2 gas through an O2 trap upstream of the bioreactor, neither cells from S. cerevisiae CEN.PK113-7D (a lab strain) nor from PE-2 (an industrial strain) washed out after an aerobic-to-anaerobic switch in the absence of AGF. S. cerevisiae PE-2 seemed to cope better than the laboratory strain with this extremely low O2 availability, since it presented higher biomass yield, lower specific rates of glucose consumption and CO2 formation, and higher survival at low pH. Lipid (fatty acid and sterol) composition dramatically altered when cells were grown anaerobically without AGF: saturated fatty acid, squalene and lanosterol contents increased, when compared to either cells grown aerobically or anaerobically with AGF. We concluded that these lipid alterations negatively affect cell viability during exposure to low pH or high ethanol titers.


Asunto(s)
Ergosterol/metabolismo , Ácidos Grasos Insaturados/deficiencia , Ácidos Grasos/análisis , Lípidos/análisis , Oxígeno/metabolismo , Saccharomyces cerevisiae/fisiología , Anaerobiosis , Biomasa , Supervivencia Celular , Etanol/metabolismo , Ácidos Grasos/aislamiento & purificación , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Metabolismo de los Lípidos , Lípidos/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
Sci Rep ; 9(1): 11642, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406145

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1-G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our findings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Metabolismo de los Lípidos/genética , Neuronas Motoras/metabolismo , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cardiolipinas/análisis , Cardiolipinas/metabolismo , Ésteres del Colesterol/análisis , Ésteres del Colesterol/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Gotas Lipídicas/patología , Lipidómica , Masculino , Espectrometría de Masas , Corteza Motora/metabolismo , Neuronas Motoras/química , Mutación , Estrés Oxidativo/genética , Ratas , Ratas Transgénicas , Médula Espinal/química , Médula Espinal/citología , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo
16.
Front Microbiol ; 10: 753, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031729

RESUMEN

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the Flavivirus genus of the Flaviviridae family. Since the large outbreaks in French Polynesia in 2013-2014 and in Brazil in 2015, ZIKV has been considered a new public health threat. Similar to other related flavivirus, ZIKV is associated with mild and self-limiting symptoms such as rash, pruritus, prostration, headache, arthralgia, myalgia, conjunctivitis, lower back pain and, when present, a short-term low grade fever. In addition, ZIKV has been implicated in neurological complications such as neonatal microcephaly and Guillain-Barré syndrome in adults. Herein, serum lipidomic analysis was used to identify possible alterations in lipid metabolism triggered by ZIKV infection. Patients who presented virus-like symptoms such as fever, arthralgia, headache, exanthema, myalgia and pruritus were selected as the control group. Our study reveals increased levels of several phosphatidylethanolamine (PE) lipid species in the serum of ZIKV patients, the majority of them plasmenyl-phosphatidylethanolamine (pPE) (or plasmalogens) linked to polyunsaturated fatty acids. Constituting up to 20% of total phospholipids in humans, plasmalogens linked to polyunsaturated fatty acids are particularly enriched in neural membranes of the brain. The biosynthesis of plasmalogens requires functional peroxisomes, which are important sites for viral replication, including ZIKV. Thus, increased levels of plasmalogens in serum of ZIKV infected subjects suggest a link between ZIKV life cycle and peroxisomes. Our data provide important insights into specific host cellular lipids that are likely associated with ZIKV replication and may serve as platform for antiviral strategy against ZIKV.

17.
Proc Natl Acad Sci U S A ; 109(47): 19321-6, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129626

RESUMEN

The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope-probing experiments with and without methane. The relative incorporation of (13)C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both (13)C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.


Asunto(s)
Procesos Autotróficos/fisiología , Bacterias/metabolismo , Biota , Ciclo del Carbono/fisiología , Metano/metabolismo , Anaerobiosis , Carbono/metabolismo , Isótopos de Carbono , Marcaje Isotópico , Metabolismo de los Lípidos , México , Datos de Secuencia Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...