Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(21): 27750-27760, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38761145

RESUMEN

We present the development of free-standing ionic liquid crystal-polymer composite electrolyte films aimed at achieving high-frequency response electromechanical actuators. Our approach entails designing novel layered ionic liquid-crystalline (LC) assemblies by complexing a mesomorphic dimethylphosphate with either a lithium salt or a room-temperature ionic liquid through the formation of ion-dipole interactions or hydrogen bonds. These electrolytes, exhibiting room-temperature ionic conductivities on the order of 10-4 S cm-1 and wide LC temperature ranges up to 77 °C, were successfully integrated into porous polymer networks. We systematically investigated the impact of ions and electrodes on the performance of ionic electroactive actuators. Specifically, the Li+-based liquid crystal-polymer composite actuator with PEDOT:PSS electrodes demonstrated the highest bending deformation, achieving a strain of 0.68% and exhibiting a broad frequency response up to 110 Hz, with a peak-to-peak displacement of 3 µm. In contrast, the ionic-liquid-based liquid crystal-polymer composite actuator with active carbon electrodes showcased a bending response at a maximum frequency of 50 Hz and a force generation of 0.48 mN, without exhibiting the back relaxation phenomenon. These findings offer valuable insights for advancing high-performance electromechanical systems with applications ranging from soft robotics to haptic interfaces.

2.
Chem Commun (Camb) ; 59(48): 7443-7446, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37254595

RESUMEN

We report columnar liquid-crystalline thiophene-oxadiazole molecules, which can be oriented by electric field and exhibit photodiode properties with an open-circuit voltage of 1 V. Their yellow luminescence can be excited by UV-visible or infrared light. Their room-temperature phosphorescence turns brighter upon heating.

3.
ACS Appl Mater Interfaces ; 15(3): 4495-4504, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36646628

RESUMEN

Self-assembly of ionic molecules into hierarchical ordered structures is a promising route to new types of solid electrolytes with enhanced ion transport. Herein, we report a liquid-crystalline polymer electrolyte membrane that contains three-dimensionally (3D) interconnected ionic pathways. To build this membrane, we used wedge-shaped amphiphilic molecules that have two ionic heads and a lipophilic tail. These molecules were combined with a low content of ionic liquid (5.6 wt %) to form a hexagonal columnar phase, where the self-assembled lipophilic cylinders were surrounded by the ionic shell. Photopolymerization of this phase produced flexible nanostructured films with 3D ionic pathways, which can serve as an electrolyte layer in soft robotic actuators. Ionic transport in the 3D pathways leads to shape memory capability as well as durable bending actuation with a voltage-controllable blocking force. Furthermore, we find a significant enhancement of actuation for the nanostructured electrolyte compared with the corresponding amorphous electrolyte.

4.
ACS Appl Mater Interfaces ; 14(38): 43701-43710, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36044399

RESUMEN

Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.

5.
RSC Adv ; 12(6): 3372-3379, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35425372

RESUMEN

Multilayered films prepared from graphene oxide (GO) subjected to a single oxidation process (1GO) can actuate in response to moisture, whereas those prepared from GO subjected to two oxidation processes (2GO) lose this ability. To elucidate the origin of this difference, the structures and properties of various multilayered films and their contents were analyzed. According to atomic force microscopy images, the lateral size of the GO monolayer in 2GO (2.0 ± 0.4 µm) was smaller than that in 1GO (3.2 ± 0.4 µm), although this size difference did not affect actuation. Scanning electron microscopy images of the cross sections of both films showed fine multilayered structures and X-ray diffraction measurements showed the moisture sensitive reversible change in the interlayer distances for both films. Both films adsorbed 30 wt% moisture in 60 s with different water contents at the bottom moist sides and top air sides of the films. Nanoindentation experiments showed hardness values (1GO: 156 ± 67 MPa; 2GO: 189 ± 97 MPa) and elastic modulus values (1GO: 4.7 ± 1.7 GPa; 2GO: 5.8 ± 3.2 GPa) typical of GO, with no substantial difference between the films. On the contrary, the 1GO film bent when subjected to a weight equal to its own weight, whereas the 2GO film did not. Such differences in the macroscopic hardness of GO films can affect their moisture-induced actuation ability.

6.
ACS Mater Au ; 2(6): 686-689, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855549

RESUMEN

We have developed room-temperature smectic liquid-crystalline (LC) ion conductors by the self-assembly of a zwitterionic mesogenic compound and a series of fluorinated lithium salts. The conductivity of lithium bis(trifluoromethylsulfonyl)imide LC complex reached 4 × 10-3 S cm-1 at ambient conditions. This LC complex sandwiched between two conductive polymer electrodes can be used in low-voltage mechanical actuators with a peak-to-peak bending deflection of ca. 20 mm upon ±1 V, 0.03 Hz excitation.

7.
Chem Sci ; 12(17): 6091-6098, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33996005

RESUMEN

We here report a new approach to develop self-healing shape memory supramolecular liquid-crystalline (LC) networks through self-assembly of molecular building blocks via combination of hydrogen bonding and coordination bonding. We have designed and synthesized supramolecular LC polymers and networks based on the complexation of a forklike mesogenic ligand with Ag+ ions and carboxylic acids. Unidirectionally aligned fibers and free-standing films forming layered LC nanostructures have been obtained for the supramolecular LC networks. We have found that hybrid supramolecular LC networks formed through metal-ligand interactions and hydrogen bonding exhibit both self-healing properties and shape memory functions, while hydrogen-bonded LC networks only show self-healing properties. The combination of hydrogen bonds and metal-ligand interactions allows the tuning of intermolecular interactions and self-assembled structures, leading to the formation of the dynamic supramolecular LC materials. The new material design presented here has potential for the development of smart LC materials and functional LC membranes with tunable responsiveness.

8.
ACS Appl Mater Interfaces ; 12(47): 53029-53038, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33198454

RESUMEN

This paper presents a new family of ferroelectric smectic liquid-crystalline binary mixtures composed of achiral and chiral trifluoromethylphenylterthiophenes. The chiral symmetry breaking of the ferroelectric smectic phases can lead to chiral photovoltaic (CPV) effects, as a type of ferroelectric photovoltaic (FePV) effect, which is caused by the internal electric field originating from the spontaneous polarization. These ferroelectric properties were examined using the Sawyer-Tower method, and the CPV effect was confirmed by measuring the steady-state photocurrent response under zero bias. We found that the remnant polarization and photocurrent density in the polarized ferroelectric phases increased nonlinearly with the increase in the content of the chiral component in the mixture. Moreover, the hole mobility evaluated by time-of-flight measurements was kept constant by varying the composition. More than 40 mol % of the chiral component was required to form the polar structure, inducing the CPV effect. Binary mixture systems are advantageous for not only optimizing liquid crystal structures and temperature ranges but also facilitating the design of materials exhibiting CPV effects.

9.
Chemphyschem ; 21(4): 328-334, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31889378

RESUMEN

Controlling assembled structures of π-conjugated liquid-crystalline molecules is of great interest in the development of stimuli-responsive luminescent materials due to their molecular motility in the ordered states. Herein, we describe a mechanoresponsive hydrogen-bonded benzodithiophene liquid-crystalline molecule that exhibits a tricolor photoluminescence switching at ambient temperature. The compound shows a shear-induced phase transition from a rectangular columnar to a metastable optically anisotropic mesophase, which is accompanied by the luminescent color change from yellow to sky-blue. The metastable mesophase exhibits a time-responsive transformation to another metastable mesophase showing a blue-green emission through isothermal aging at room temperature. The luminescent color of aged sample reverts back to the initial yellow color by thermal annealing at 150 °C. These dynamic structural changes accompanied by the emission color changes are governed by distinct π-stacking modes and hydrogen-bonded patterns. The shear-induced luminescent color change from yellow to blue is found to occur above the shear strain of 390 % at which the shear stress is 2.4×105  Pa as determined from dynamic viscoelastic measurements.

10.
ACS Macro Lett ; 8(1): 24-30, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35619406

RESUMEN

Here we report columnar liquid-crystalline (LC) nanostructured membranes that highly remove viruses and show sufficient water permeation. These membranes were prepared by employing two-component liquid crystals that exhibit tetragonal columnar phases. The membranes exhibited virus rejection values of >99.99% (log10 reduction value (LRV) > 4) and water flux ranging from 19 to 61 L m-2 h-1 (operation pressure: 0.3 MPa). These membranes were fabricated by photopolymerization of a fan-shaped diol molecule and imidazolium ionic liquid mixture, followed by subsequent removal of the ionic liquid. The rejection values and water flux depend on the fraction of ionic liquid. These results show new design strategies of materials for the water treatment nanostructured membranes that remove pathogens and contaminants.

11.
ACS Macro Lett ; 8(10): 1303-1308, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651161

RESUMEN

Here, we describe a strategy to obtain nanoporous liquid-crystalline (LC) membranes by incorporating a photocleavable ortho-nitrobenzyl group in polymerizable columnar liquid crystals. Two derivatives were synthesized with propylene and nonylene spacers, respectively, between the ionic and the photocleavable moieties to introduce various size nanopores after photocleavage. The membranes were prepared by photopolymerization in the LC states, followed by photocleavage and washing with methanol. The resulting membranes show a virus rejection of 99.99%. Although the rejection value remained almost the same for the two membranes, water flux increased with increasing the length of the alkyl spacers. These membranes were found to be almost free from pinhole defects. The present study offers a new methodology for the development of nanoporous membranes with organized nanostructures for separation technologies.

12.
Chem Sci ; 9(3): 576-585, 2018 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-29629121

RESUMEN

We here report the supramolecular self-assembly of hydrogen-bonded motifs for the development of nanostructured materials that exhibit dynamic functions such as stimuli-responsive properties and molecular recognition behaviour. We have designed and synthesised new thermotropic bicontinuous and columnar liquid-crystalline (LC) guanine-oligothiophene conjugates tethered with lipophilic chains, which exhibit ionic, electronic and photoluminescence properties. Their potassium salt complexes self-assemble into thermotropic columnar LC phases. Time-of-flight photoconductivity measurements have revealed that the guanine-oligothiophene conjugates in the LC states possess charge transport abilities with either electron or ambipolar mobility values of 10-4 to 10-3 cm2 V-1 s-1. Furthermore, we have found that the complexation of potassium ions with the guanine motif could lead not only to structural change and thermal stabilization of the LC phases but also to a photoluminescence colour change in the solid states. The strategy presented in this work could lead to the design of new functional LC materials that could potentially be applicable as sensors and electronic devices.

13.
Adv Sci (Weinh) ; 5(1): 1700405, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375969

RESUMEN

Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

14.
ACS Omega ; 3(1): 159-166, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457884

RESUMEN

We report advanced liquid-crystalline (LC) electrolytes for use in lithium-ion batteries (LIBs). We evaluated the potential of LC electrolytes with a half cell composed of Li metal and LiFePO4 which is a conventional positive electrode for LIBs. Low-molecular-weight carbonates of ethylene carbonate or propylene carbonate were incorporated into the two-dimensional (2D) nanostructured electrolyte composed of mesogen-containing carbonate and lithium bis(trifluoromethylsulfonyl)imide. The incorporation of low-molecular-weight carbonates increased the ionic conductivity with maintaining 2D nanostructures in the LC state. High-power performances at relatively high current densities induced by higher ionic conductivities have been achieved by LC electrolytes with low-molecular-weight carbonates. Furthermore, room-temperature operation of LIBs using LC electrolytes is reported for the first time. In the research field of electrolytes for LIBs, we demonstrate the progress of a new category of LC electrolytes.

15.
Angew Chem Int Ed Engl ; 56(45): 14085-14089, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28876502

RESUMEN

Supramolecular self-assembly of 24 forklike mesogenic ligands and 12 transition metal ions led to the formation of giant spherical coordination complexes that exhibit liquid-crystalline (LC) phases. Self-healing LC supramolecular gels were also obtained through the introduction of these LC nanostructured supramolecular giant spherical complexes into dynamic covalent networks formed by cross-linkers and bifunctional polymers. The giant spherical structures of the PdII complexes with 72 rodlike moieties on the periphery were characterized by NMR, diffusion-ordered NMR spectroscopy, and mass spectrometry. These complexes are stable and exhibit lyotropic LC behavior, while the mesogenic ligands show thermotropic LC properties. The self-assembled LC structures of the spherical complexes can be tuned by the length of the rodlike moieties.

16.
Chempluschem ; 82(6): 834-840, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31961564

RESUMEN

Dye-sensitized solar cells employing nonvolatile liquid-crystalline (LC) electrolytes that form nanostructures capable of efficient ion transport are reported. The LC electrolyte consists of a cyclic carbonate-functionalized mesogen and an iodide-based ionic liquid that nanosegregates into lamellar structures exhibiting over four times higher ion conductivities parallel to the layers than perpendicular to the layers. The self-assembled ion pathways allow efficient ion transport in the semi-solid LC state. When used together with organic dyes, DSSCs employing these LC electrolytes show higher power conversion efficiency (PCE) than metal-organic dyes. This behavior is not observed for devices containing standard liquid electrolytes. The higher PCEs of the LC-based devices can be attributed to longer electron lifetimes (τ) and higher electron densities in the photoelectrodes. The high concentration of iodide ions in the nanostructured pathways of the LC electrolyte is thought to induce reductive quenching of the ruthenium-based sensitizer, which competes with the electron injection process and lowers the τ and electron densities of the TiO2 .

17.
Chem Commun (Camb) ; 52(96): 13861-13864, 2016 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-27841379

RESUMEN

The lyotropic liquid-crystalline behavior of polymerizable amphiphiles has been tuned by using tailor-made ionic liquids as solvents so as to induce the formation of bicontinuous cubic assemblies having 3D interconnected nanochannels. The fixation of the amphiphilic assemblies has been successfully achieved by in situ photopolymerization.

18.
Chemistry ; 22(26): 8872-8, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27219716

RESUMEN

Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) .

19.
Chem Asian J ; 11(4): 520-6, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26894682

RESUMEN

We examined the self-organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1-butyl-3-methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid-crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self-organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen-bond, van der Waals, and π-π interactions.


Asunto(s)
Aminoácidos/química , Imidazoles/química , Líquidos Iónicos/química , Cristales Líquidos/química , Tensoactivos/química , Transición de Fase
20.
J Am Chem Soc ; 137(41): 13212-5, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26418343

RESUMEN

We demonstrate switching of ionic conductivities in wedge-shaped liquid-crystalline (LC) ammonium salts. A thermoreversible phase transition between the rectangular columnar (Colr) and hexagonal columnar (Colh) phases is used for the switch. The ionic conductivities in the Colh phase are about four orders of magnitude higher than those in the Colr phase. The switching behavior of conductivity can be ascribed to the structural change of assembled ionic channels. X-ray experiments reveal a highly ordered packing of the ions in the Colr phase, which prevents the ion transport.


Asunto(s)
Compuestos de Amonio/química , Benceno/química , Cristales Líquidos/química , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA