Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
EClinicalMedicine ; 69: 102499, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440400

RESUMEN

Background: Previous deep learning models have been proposed to predict the pathological complete response (pCR) and axillary lymph node metastasis (ALNM) in breast cancer. Yet, the models often leveraged multiple frameworks, required manual annotation, and discarded low-quality images. We aimed to develop an automated and reusable deep learning (AutoRDL) framework for tumor detection and prediction of pCR and ALNM using ultrasound images with diverse qualities. Methods: The AutoRDL framework includes a You Only Look Once version 5 (YOLOv5) network for tumor detection and a progressive multi-granularity (PMG) network for pCR and ALNM prediction. The training cohort and the internal validation cohort were recruited from Guangdong Provincial People's Hospital (GPPH) between November 2012 and May 2021. The two external validation cohorts were recruited from the First Affiliated Hospital of Kunming Medical University (KMUH), between January 2016 and December 2019, and Shunde Hospital of Southern Medical University (SHSMU) between January 2014 and July 2015. Prior to model training, super-resolution via iterative refinement (SR3) was employed to improve the spatial resolution of low-quality images from the KMUH. We developed three models for predicting pCR and ALNM: a clinical model using multivariable logistic regression analysis, an image model utilizing the PMG network, and a combined model that integrates both clinical and image data using the PMG network. Findings: The YOLOv5 network demonstrated excellent accuracy in tumor detection, achieving average precisions of 0.880-0.921 during validation. In terms of pCR prediction, the combined modelpost-SR3 outperformed the combined modelpre-SR3, image modelpost-SR3, image modelpre-SR3, and clinical model (AUC: 0.833 vs 0.822 vs 0.806 vs 0.790 vs 0.712, all p < 0.05) in the external validation cohort (KMUH). Consistently, the combined modelpost-SR3 exhibited the highest accuracy in ALNM prediction, surpassing the combined modelpre-SR3, image modelpost-SR3, image modelpre-SR3, and clinical model (AUC: 0.825 vs 0.806 vs 0.802 vs 0.787 vs 0.703, all p < 0.05) in the external validation cohort 1 (KMUH). In the external validation cohort 2 (SHSMU), the combined model also showed superiority over the clinical and image models (0.819 vs 0.712 vs 0.806, both p < 0.05). Interpretation: Our proposed AutoRDL framework is feasible in automatically predicting pCR and ALNM in real-world settings, which has the potential to assist clinicians in optimizing individualized treatment options for patients. Funding: National Key Research and Development Program of China (2023YFF1204600); National Natural Science Foundation of China (82227802, 82302306); Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (JNU1AF-CFTP-2022-a01201); Science and Technology Projects in Guangzhou (202201020022, 2023A03J1036, 2023A03J1038); Science and Technology Youth Talent Nurturing Program of Jinan University (21623209); and Postdoctoral Science Foundation of China (2022M721349).

2.
Radiol Med ; 129(4): 598-614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512622

RESUMEN

OBJECTIVE: Artificial intelligence (AI) holds enormous potential for noninvasively identifying patients with rectal cancer who could achieve pathological complete response (pCR) following neoadjuvant chemoradiotherapy (nCRT). We aimed to conduct a meta-analysis to summarize the diagnostic performance of image-based AI models for predicting pCR to nCRT in patients with rectal cancer. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A literature search of PubMed, Embase, Cochrane Library, and Web of Science was performed from inception to July 29, 2023. Studies that developed or utilized AI models for predicting pCR to nCRT in rectal cancer from medical images were included. The Quality Assessment of Diagnostic Accuracy Studies-AI was used to appraise the methodological quality of the studies. The bivariate random-effects model was used to summarize the individual sensitivities, specificities, and areas-under-the-curve (AUCs). Subgroup and meta-regression analyses were conducted to identify potential sources of heterogeneity. Protocol for this study was registered with PROSPERO (CRD42022382374). RESULTS: Thirty-four studies (9933 patients) were identified. Pooled estimates of sensitivity, specificity, and AUC of AI models for pCR prediction were 82% (95% CI: 76-87%), 84% (95% CI: 79-88%), and 90% (95% CI: 87-92%), respectively. Higher specificity was seen for the Asian population, low risk of bias, and deep-learning, compared with the non-Asian population, high risk of bias, and radiomics (all P < 0.05). Single-center had a higher sensitivity than multi-center (P = 0.001). The retrospective design had lower sensitivity (P = 0.012) but higher specificity (P < 0.001) than the prospective design. MRI showed higher sensitivity (P = 0.001) but lower specificity (P = 0.044) than non-MRI. The sensitivity and specificity of internal validation were higher than those of external validation (both P = 0.005). CONCLUSIONS: Image-based AI models exhibited favorable performance for predicting pCR to nCRT in rectal cancer. However, further clinical trials are warranted to verify the findings.


Asunto(s)
Inteligencia Artificial , Neoplasias del Recto , Humanos , Estudios Retrospectivos , Terapia Neoadyuvante/métodos , Quimioradioterapia/métodos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Neoplasias del Recto/patología
3.
Radiol Med ; 129(3): 353-367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353864

RESUMEN

OBJECTIVE: To explore the potential of pre-therapy computed tomography (CT) parameters in predicting the treatment response to initial conventional TACE (cTACE) in intermediate-stage hepatocellular carcinoma (HCC) and develop an interpretable machine learning model. METHODS: This retrospective study included 367 patients with intermediate-stage HCC who received cTACE as first-line therapy from three centers. We measured the mean attenuation values of target lesions on multi-phase contrast-enhanced CT and further calculated three CT parameters, including arterial (AER), portal venous (PER), and arterial portal venous (APR) enhancement ratios. We used logistic regression analysis to select discriminative features and trained three machine learning models via 5-fold cross-validation. The performance in predicting treatment response was evaluated in terms of discrimination, calibration, and clinical utility. Afterward, a Shapley additive explanation (SHAP) algorithm was leveraged to interpret the outputs of the best-performing model. RESULTS: The mean diameter, ECOG performance status, and cirrhosis were the important clinical predictors of cTACE treatment response, by multiple logistic regression. Adding the CT parameters to clinical variables showed significant improvement in performance (net reclassification index, 0.318, P < 0.001). The Random Forest model (hereafter, RF-combined model) integrating CT parameters and clinical variables demonstrated the highest performance on external validation dataset (AUC of 0.800). The decision curve analysis illustrated the optimal clinical benefits of RF-combined model. This model could successfully stratify patients into responders and non-responders with distinct survival (P = 0.001). CONCLUSION: The RF-combined model can serve as a robust and interpretable tool to identify the appropriate crowd for cTACE sessions, sparing patients from receiving ineffective and unnecessary treatments.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Quimioembolización Terapéutica/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Aprendizaje Automático
4.
Acad Radiol ; 31(1): 84-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37495426

RESUMEN

RATIONALE AND OBJECTIVES: Osteoporosis is primarily diagnosed using dual-energy X-ray absorptiometry (DXA); yet, DXA is significantly underutilized, causing osteoporosis, an underdiagnosed condition. We aimed to provide an opportunistic approach to screen for osteoporosis using artificial intelligence based on lumbar spine X-ray radiographs. MATERIALS AND METHODS: In this institutional review board-approved retrospective study, female patients aged ≥50 years who received both X-ray scans and DXA of the lumbar vertebrae, in three centers, were included. A total of 1180 cases were used for training and 145 cases were used for testing. We proposed a novel broad-learning system (BLS) and then compared the performance of BLS models using radiomic features and deep features as a source of input. The deep features were extracted using ResNet18 and VGG11, respectively. The diagnostic performances of these BLS models were evaluated with the area under the curve (AUC), sensitivity, and specificity. RESULTS: The incidence rate of osteoporosis in the training and test sets was 35.9% and 37.9%, respectively. The radiomic feature-based BLS model achieved higher testing AUC (0.802 vs. 0.654 vs. 0.632, both P = .002), sensitivity (78.2% vs. 56.4% vs. 50.9%), and specificity (82.2% vs. 74,4% vs. 75.6%) than the two deep feature-based BLS models. CONCLUSION: Our proposed radiomic feature-based BLS model has the potential to expand osteoporosis screening to a broader population by identifying osteoporosis on lumbar spine X-ray radiographs.


Asunto(s)
Vértebras Lumbares , Osteoporosis , Humanos , Femenino , Vértebras Lumbares/diagnóstico por imagen , Densidad Ósea , Estudios Retrospectivos , Inteligencia Artificial , Osteoporosis/diagnóstico por imagen , Absorciometría de Fotón
5.
Gastroenterol Rep (Oxf) ; 11: goad070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058518

RESUMEN

Background: The efficacy of adjuvant chemotherapy (AC) on survival outcomes of patients with stage I gastric cancer (GC) after curative resection remains controversial. We aimed to determine whether these patients would benefit from AC. Methods: This retrospective study included patients with pathologically confirmed stage I GC who underwent curative resection between November 2010 and December 2020. Patients were divided into AC and non-AC groups, then a 1:1 propensity score matching (PSM) analysis was performed to minimize the selection bias. Potential risk factors including age, pN stage, pT stage, lymphovascular invasion, perineural invasion, tumor size, histological type, and carcinoembryonic antigen level were used as matching covariates. The recurrence-free survival (RFS) and disease-specific survival (DSS) were compared between groups using the Kaplan-Meier method. Results: A total of 902 consecutive patients were enrolled and 174 (19.3%) patients were treated with AC. PSM created 123 pairs of patients. Before PSM, patients receiving AC had lower 10-year RFS rates (90% vs 94.6%, P = 0.035) than those who did not receive AC; the two groups had similar 10-year DSS rates (93.8% vs 95.0%, P = 0.240). After PSM, there were no statistical differences in the 10-year RFS (90.9% vs 93.0%, P = 0.507) or DSS rates (93.5% vs 93.6%, P = 0.811) between the two groups. Similar results were found in the stage IA and IB subgroups. Moreover, these findings were not affected by AC cycles. Conclusions: The addition of AC could not provide survival benefits for patients with stage I GC after surgery and follow-up is thus recommended. However, large-scale randomized clinical trials are required.

6.
J Intensive Care ; 11(1): 49, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941079

RESUMEN

BACKGROUND: This study aimed to apply the backpropagation neural network (BPNN) to develop a model for predicting multidrug-resistant organism (MDRO) infection in critically ill patients. METHODS: This study collected patient information admitted to the intensive care unit (ICU) of the Affiliated Hospital of Qingdao University from August 2021 to January 2022. All patients enrolled were divided randomly into a training set (80%) and a test set (20%). The least absolute shrinkage and selection operator and stepwise regression analysis were used to determine the independent risk factors for MDRO infection. A BPNN model was constructed based on these factors. Then, we externally validated this model in patients from May 2022 to July 2022 over the same center. The model performance was evaluated by the calibration curve, the area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS: In the primary cohort, 688 patients were enrolled, including 109 (15.84%) MDRO infection patients. Risk factors for MDRO infection, as determined by the primary cohort, included length of hospitalization, length of ICU stay, long-term bed rest, antibiotics use before ICU, acute physiology and chronic health evaluation II, invasive operation before ICU, quantity of antibiotics, chronic lung disease, and hypoproteinemia. There were 238 patients in the validation set, including 31 (13.03%) MDRO infection patients. This BPNN model yielded good calibration. The AUC of the training set, the test set and the validation set were 0.889 (95% CI 0.852-0.925), 0.919 (95% CI 0.856-0.983), and 0.811 (95% CI 0.731-0.891), respectively. CONCLUSIONS: This study confirmed nine independent risk factors for MDRO infection. The BPNN model performed well and was potentially used to predict MDRO infection in ICU patients.

7.
EMBO Rep ; 24(12): e57176, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870400

RESUMEN

Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. ß-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.


Asunto(s)
Resistencia a la Insulina , Núcleo Hipotalámico Paraventricular , Ratas , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Depresión , Obesidad/metabolismo , Adipoquinas/metabolismo , Adipoquinas/farmacología
8.
Radiother Oncol ; 188: 109904, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678624

RESUMEN

BACKGROUND AND PURPOSE: Image-defined sarcopenia is linked to increased mortality among patients with cancer. Nevertheless, its effect on patients with nasopharyngeal carcinoma (NPC) is incompletely established. This study's aim was to investigate the prognostic significance of MRI-defined sarcopenia on the survival of patients undergoing concurrent chemoradiotherapy (CCRT) ± inducing chemotherapy (IC) for NPC treatment. METHODS: 1,307 patients with stage II-IVa NPC were included in this retrospective study. Sarcopenia was defined using skeletal muscle index (SMI) determined through baseline MRI at the C3 level. The association of sarcopenia with overall survival (OS) and progression-free survival (PFS) was assessed by Cox regression models using 1:1 propensity score matching (PSM) analysis. We also conducted a stratification analysis using BMI and treatment strategies. RESULTS: Sarcopenia was an independent risk factor for both OS and PFS (all P < 0.05). However, BMI was not substantially linked to OS and PFS (all P > 0.05). Sarcopenic patients showed lower rates of OS (HR = 2.00, 95% CI: 1.54-2.60, P < 0.001) and PFS (HR = 1.67, 95% CI: 1.35-2.07, P < 0.001) in contrast with nonsarcopenic patients. According to stratification analysis, being overweight was linked to a protective effect in nonsarcopenic patients only. Sarcopenic patients showed similar OS and PFS regardless of the treatment modality. CONCLUSIONS: Sarcopenia is underrecognized in NPC patients. Measurement of sarcopenia using routine MRI scans in NPC patients provided significant prognostic information, outperforming BMI. Patients with sarcopenia failed to benefit from an additional IC regimen.

9.
Heliyon ; 9(8): e19229, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664714

RESUMEN

Background: Multi-center research has demonstrated that adopting Silva's pattern-based classification system (SPBC) enhances the clinical prognosis and facilitates hierarchical management of patients with endocervical adenocarcinomas (EAC). However, inconsistencies in SPBC can arise due to variations in pathologists' experience levels. Thus, the implementation of standardized decision-making tools becomes crucial to enhance the practicality of SPBC in clinical diagnosis and treatment. Methods: We enrolled a total of 90 patients with EAC in this study, of which 63 were assigned to the training group, and the remaining 27 were allocated to the validation group. To create and validate the prediction models for SPBC, we utilized a deep learning system (DLS) and calculated the area under the receiver operating characteristic curve (AUC). Results: In Silva pattern classification, ResNet50 achieved an average accuracy of 74.36% (63.64% for pattern A, 55.56% for pattern B, and 89.47% for pattern C respectively). Moreover, in test set, ResNet50 achieved an AUC of 0.69 for pattern A, 0.58 for pattern B, and 0.91 for pattern C. Conclusions: We successfully established a DLS for SPBC, which holds the potential to aid pathologists in accurately classifying patients with EAC.

10.
Acad Radiol ; 30(10): 2181-2191, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230821

RESUMEN

RATIONALE AND OBJECTIVES: Chinese Thyroid Imaging Reporting and Data Systems (C-TIRADS) was developed to provide a more simplified tool for stratifying thyroid nodules. Here we aimed to validate the efficacy of C-TIRADS in distinguishing benign from malignant and in guiding fine-needle aspiration biopsies in comparison with the American College of Radiology TIRADS (ACR-TIRADS) and European TIRADS (EU-TIRADS). MATERIALS AND METHODS: This study retrospectively included 3438 thyroid nodules (≥10 mm) in 3013 patients (mean age, 47.1 years ± 12.9) diagnosed between January 2013 and November 2019. Ultrasound features of the nodules were evaluated and categorized according to the lexicons of the three TIRADS. We compared these TIRADS by using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), sensitivity, specificity, net reclassification improvement (NRI), and unnecessary fine-needle aspiration biopsy (FNAB) rate. RESULTS: Of the 3438 thyroid nodules, 707 (20.6%) were malignant. C-TIRADS showed higher discrimination performance (AUROC, 0.857; AUPRC, 0.605) than ACR-TIRADS (AUROC, 0.844; AUPRC, 0.567) and EU-TIRADS (AUROC, 0.802; AUPRC, 0.455). The sensitivity of C-TIRADS (85.3%) was lower than that of ACR-TIRADS (89.1%) but higher than that of EU-TIRADS (78.4%). The specificity of C-TIRADS (76.9%) was similar to that of EU-TIRADS (78.9%) and higher than that of ACR-TIRADS (69.5%). The unnecessary FNAB rate was lowest with C-TIRADS (21.2%), followed by ACR-TIRADS (41.7%) and EU-TIRADS (58.3%). C-TIRADS obtained significant NRI for recommending FNAB over ACR-TIRADS (19.0%, P < 0.001) and EU-TIRADS (25.5%, P < 0.001). CONCLUSION: C-TIRADS may be a clinically applicable tool to manage thyroid nodules, which warrants thorough tests in other geographic settings.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Persona de Mediana Edad , Nódulo Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico , Estudios Retrospectivos , Sistemas de Datos , Ultrasonografía/métodos
11.
Insights Imaging ; 14(1): 28, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746892

RESUMEN

BACKGROUND: To develop and validate an MRI texture-based machine learning model for the noninvasive assessment of renal function. METHODS: A retrospective study of 174 diabetic patients (training cohort, n = 123; validation cohort, n = 51) who underwent renal MRI scans was included. They were assigned to normal function (n = 71), mild or moderate impairment (n = 69), and severe impairment groups (n = 34) according to renal function. Four methods of kidney segmentation on T2-weighted images (T2WI) were compared, including regions of interest covering all coronal slices (All-K), the largest coronal slices (LC-K), and subregions of the largest coronal slices (TLCO-K and PIZZA-K). The speeded-up robust features (SURF) and support vector machine (SVM) algorithms were used for texture feature extraction and model construction, respectively. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of models. RESULTS: The models based on LC-K and All-K achieved the nonsignificantly highest accuracy in the classification of renal function (all p values > 0.05). The optimal model yielded high performance in classifying the normal function, mild or moderate impairment, and severe impairment, with an area under the curve of 0.938 (95% confidence interval [CI] 0.935-0.940), 0.919 (95%CI 0.916-0.922), and 0.959 (95%CI 0.956-0.962) in the training cohorts, respectively, as well as 0.802 (95%CI 0.800-0.807), 0.852 (95%CI 0.846-0.857), and 0.863 (95%CI 0.857-0.887) in the validation cohorts, respectively. CONCLUSION: We developed and internally validated an MRI-based machine-learning model that can accurately evaluate renal function. Once externally validated, this model has the potential to facilitate the monitoring of patients with impaired renal function.

12.
J Biomed Mater Res A ; 111(8): 1151-1160, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651651

RESUMEN

Bioengineered corneal substitutes offer a solution to the shortage of donor corneal tissue worldwide. As one of the major structural components of the cornea, collagen has shown great potential for tissue-engineered cornea substitutes. Herein, free-standing collagen membranes fabricated using electro-compaction were assessed in corneal bioengineering application by comparing them with nonelectro-compacted collagen (NECC). The well-organized and biomimetic fibril structure resulted in a significant improvement in mechanical properties. A 10-fold increase in tensile and compressive modulus was recorded when compared with NECC membranes. In addition to comparable transparency in the visible light range, the glucose permeability of the electro-compacted collagen (ECC) membrane is higher than that of the native human cornea. Human corneal epithelial cells adhere and proliferate well on the ECC membrane, with a large cell contact area observed. The as-described ECC has appropriate structural, topographic, mechanical, optical, glucose permeable, and cell support properties to provide a platform for a bioengineered cornea; including the outer corneal epithelium and potentially deeper corneal tissues.


Asunto(s)
Epitelio Corneal , Humanos , Ingeniería de Tejidos/métodos , Córnea , Colágeno/química , Glucosa
13.
Sci Rep ; 12(1): 17884, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284201

RESUMEN

Salt stress is a major challenge for plant growth and yield achievement in canola (Brassica napus L.). Nitrogen (N) is considered as an essential nutrient involved in many physiological processes, and carbon (C) is the most component of plant biomass. N and C assimilations of canola plants are always inhibited by salt stress. However, the knowledge of how salt stress affects biomass and seed yield through changing N and C characters is limited. A field experiment was conducted to investigate the growth process, N and C characters, photosynthetic performance, biomass accumulation and seed yield under the low and high soil salt-ion concentration conditions (LSSC and HSSC). The results indicated that HSSC postponed the time of early flowering stage and maturity stage by 4 ~ 5 days and 6 ~ 8 days, respectively, as compared with LSSC. Besides, HSSC decreased the N and C accumulation and C/N at both growing stages, suggesting that salt stress break the balance between C assimilation and N assimilation, with stronger effect on C assimilation. Although the plant N content under HSSC was increased, the photosynthesis rate at early flowering stage was decreased. The leaf area index at early flowering stage was also reduced. In addition, HSSC decreased N translocation efficiency especially in stem, and N utilization efficiency. These adverse effects of HSSC together resulted in reduced biomass accumulation and seed yield. In conclusion, the high soil salt-ion concentration reduced biomass accumulation and seed yield in canola through changing N and C characters.


Asunto(s)
Brassica napus , Nitrógeno/análisis , Carbono/farmacología , Suelo , Semillas/química , Estrés Salino
14.
Mater Horiz ; 9(11): 2698-2721, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36189465

RESUMEN

Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.


Asunto(s)
Materiales Biocompatibles , Colágeno , Animales , Hidroxiprolina/química , Reproducibilidad de los Resultados , Colágeno/genética , Código Genético/genética
15.
Int J Cancer ; 151(12): 2229-2243, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36095154

RESUMEN

Current risk stratification systems for thyroid nodules suffer from low specificity and high biopsy rates. Recently, machine learning (ML) is introduced to assist thyroid nodule diagnosis but lacks interpretability. Here, we developed and validated ML models on 3965 thyroid nodules, as compared to the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS). Subsequently, a SHapley Additive exPlanation (SHAP) algorithm was leveraged to interpret the results of the best-performing ML model. Clinical characteristics including thyroid-function tests were collected from medical records. Five ACR TI-RADS ultrasonography (US) categories plus nodule size were assessed by experienced radiologists. Random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost) were used to build US-only and US-clinical ML models. The ML models and ACR TI-RADS were compared in terms of diagnostic performance and unnecessary biopsy rate. Among the ML models, the US-only RF model (hereafter, Thy-Wise) achieved the optimal performance. Compared to ACR TI-RADS, Thy-Wise showed higher accuracy (82.4% vs 74.8% for the internal validation; 82.1% vs 73.4% for external validation) and specificity (78.7% vs 68.3% for internal validation; 78.5% vs 66.9% for external validation) while maintaining sensitivity (91.7% vs 91.2% for internal validation; 91.9% vs 91.1% for external validation), as well as reduced unnecessary biopsies (15.3% vs 32.3% for internal validation; 15.7% vs 47.3% for external validation). The SHAP-based interpretation of Thy-Wise enables clinicians to better understand the reasoning behind the diagnosis, which may facilitate the clinical translation of this model.


Asunto(s)
Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Estudios Retrospectivos , Sistemas de Datos , Aprendizaje Automático
16.
Transl Vis Sci Technol ; 11(6): 26, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767274

RESUMEN

Purpose: Corneal perforation is a clinical emergency that can result in blindness. Currently corneal perforations are treated either by cyanoacrylate glue which is toxic to corneal cells, or by using commercial fibrin glue for small perforations. Both methods use manual delivery which lead to uncontrolled application of the glues to the corneal surface. Therefore, there is a need to develop a safe and effective alternative to artificial adhesives. Methods: Previously, our group developed a transparent human platelet lysate (hPL)-based biomaterial that accelerated corneal epithelial cells healing in vitro. This biomaterial was further characterized in this study using rheometry and adhesive test, and a two-component delivery system was developed for its application. An animal trial (5 New Zealand white rabbits) to compare impact of the biomaterial and cyanoacrylate glue (control group) on a 2 mm perforation was conducted to evaluate safety and efficacy. Results: The hPL-based biomaterial showed higher adhesiveness compared to commercial fibrin glue. Treatment rabbits had lower pain scores and faster recovery, despite generating similar scar-forming structure compared to controls. No secondary corneal ulcer was generated in rabbits treated with the bio-adhesive. Conclusions: This study reports an in situ printing system capable of delivering a hPL-based, transparent bio-adhesive and successfully treating small corneal perforations. The bio-adhesive-treated rabbits recovered faster and required no additional analgesia. Translational Relevance: The developed in situ hPL bio-adhesives treatment represents a new format of treating corneal perforation that is easy to use, allows for accurate application, and can be a potentially effective and pain relief treatment.


Asunto(s)
Perforación Corneal , Adhesivos Tisulares , Adhesivos , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Perforación Corneal/tratamiento farmacológico , Cianoacrilatos/uso terapéutico , Adhesivo de Tejido de Fibrina/uso terapéutico , Humanos , Dolor/tratamiento farmacológico , Impresión Tridimensional , Conejos , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/uso terapéutico
17.
Cancer Imaging ; 22(1): 23, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549776

RESUMEN

BACKGROUND: Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate prediction of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital subtraction angiography (DSA) videos via a deep learning approach. METHODS: This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 2, respectively. RESULTS: Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73-0.78) and 0.73 (95% CI: 0.71-0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmentation results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment response to first TACE with an accuracy of 78.2% (95%CI: 74.2-82.3), sensitivity of 77.6% (95%CI: 70.7-84.0), and specificity of 78.7% (95%CI: 72.9-84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1-81.7), sensitivity of 50.5% (95%CI: 40.0-61.5), and specificity of 83.5% (95%CI: 79.2-87.7) for the external validation cohort. Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-responders divided by Model 2 (p = 0.002). CONCLUSIONS: Our multi-task deep learning framework provided a real-time effective approach for decoding DSA videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world settings.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Aprendizaje Profundo , Neoplasias Hepáticas , Angiografía de Substracción Digital , Inteligencia Artificial , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Quimioembolización Terapéutica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Estudios Retrospectivos , Resultado del Tratamiento
18.
Eur Radiol ; 32(9): 5852-5868, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35316364

RESUMEN

OBJECTIVES: Radiomic features derived from routine medical images show great potential for personalized medicine in gastric cancer (GC). We aimed to evaluate the current status and quality of radiomic research as well as its potential for identifying biomarkers to predict therapy response and prognosis in patients with GC. METHODS: We performed a systematic search of the PubMed and Embase databases for articles published from inception through July 10, 2021. The phase classification criteria for image mining studies and the radiomics quality scoring (RQS) tool were applied to evaluate scientific and reporting quality. RESULTS: Twenty-five studies consisting of 10,432 patients were included. 96% of studies extracted radiomic features from CT images. Association between radiomic signature and therapy response was evaluated in seven (28%) studies; association with survival was evaluated in 17 (68%) studies; one (4%) study analyzed both. All results of the included studies showed significant associations. Based on the phase classification criteria for image mining studies, 18 (72%) studies were classified as phase II, with two, four, and one studies as discovery science, phase 0 and phase I, respectively. The median RQS score for the radiomic studies was 44.4% (range, 0 to 55.6%). There was extensive heterogeneity in the study population, tumor stage, treatment protocol, and radiomic workflow amongst the studies. CONCLUSIONS: Although radiomic research in GC is highly heterogeneous and of relatively low quality, it holds promise for predicting therapy response and prognosis. Efforts towards standardization and collaboration are needed to utilize radiomics for clinical application. KEY POINTS: • Radiomics application of gastric cancer is increasingly being reported, particularly in predicting therapy response and survival. • Although radiomics research in gastric cancer is highly heterogeneous and relatively low quality, it holds promise for predicting clinical outcomes. • Standardized imaging protocols and radiomic workflow are needed to facilitate radiomics into clinical use.


Asunto(s)
Medicina de Precisión , Neoplasias Gástricas , Diagnóstico por Imagen/métodos , Humanos , Pronóstico , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/terapia
19.
Eur Radiol ; 32(8): 5339-5352, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35169897

RESUMEN

OBJECTIVES: To reveal a radiogenomic correlation between the presence of the T2-fluid-attenuated inversion recovery resection (T2-FLAIR) mismatch sign on MR images and isocitrate dehydrogenase (IDH) mutation status in adult patients with lower-grade gliomas (LGGs). METHODS: A web-based systemic search for eligible literature up to April 13, 2021, was conducted on PubMed, Embase, and the Cochrane Library databases by two independent reviewers. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. We included studies evaluating the accuracy of the T2-FLAIR mismatch sign in diagnosing the IDH mutation in adult patients with LGGs. The T2-FLAIR mismatch sign was defined as a T2-hyperintense lesion that is hypointense on FLAIR except for a hyperintense rim. RESULTS: Fourteen studies (n = 1986) were finally identified. The mean age of patients in the included studies ranged from 38.5 to 56 years. The pooled area under the curve (AUC), sensitivity, and specificity were obtained for each molecular profile: IDHmut-Codel: 0.46 (95% confidence interval [CI]: 0.42-0.50), 1% (95%CI: 0-7%), and 69% (95%CI: 62-75%), respectively; IDHmut-Noncodel: 0.75 (95%CI: 0.71-0.79), 42% (95%CI: 34-50%), and 99% (95%CI: 96-100%), respectively; IDH-Mutation regardless of 1p/19q codeletion status: 0.77 (95%CI: 0.73-0.80), 29% (95%CI: 21-40%), and 99% (95%CI: 92-100%), respectively. CONCLUSIONS: The T2-FLAIR mismatch sign was an insensitive but highly specific marker for IDHmut-Noncodel and IDH-Mutation LGGs, whereas it was not a useful marker for IDHmut-Codel LGGs. The findings might identify the T2-FLAIR mismatch sign as a non-invasive imaging biomarker for the selection of patients with IDH-mutant LGGs. KEY POINTS: • The T2-FLAIR mismatch sign was not a sensitive sign for IDH mutation in LGGs. • The T2-FLAIR mismatch sign was related to IDHmut-Noncodel with a specificity of 99%. • The pooled specificity (69%) of the T2-FLAIR mismatch sign for IDHmut-Codel was low.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Biomarcadores , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Mutación/genética , Estudios Retrospectivos
20.
Exp Neurol ; 347: 113870, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563511

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-ß (Aß) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aß clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Gliosis/patología , Enfermedades Neuroinflamatorias/patología , Fármacos Neuroprotectores/farmacología , Piperidinas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...