Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701444

RESUMEN

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

2.
Phys Rev Lett ; 132(18): 180803, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759186

RESUMEN

Solid-state qubits with a photonic interface is very promising for quantum networks. Color centers in silicon carbide have shown excellent optical and spin coherence, even when integrated with membranes and nanostructures. Additionally, nuclear spins coupled with electron spins can serve as long-lived quantum memories. Pioneering work previously has realized the initialization of a single nuclear spin and demonstrated its entanglement with an electron spin. In this Letter, we report the first realization of single-shot readout for a nuclear spin in SiC. We obtain a deterministic nuclear spin initialization and readout fidelity of 94.95% with a measurement duration of 1 ms. With a dual-step readout scheme, we obtain a readout fidelity as high as 99.03% within 0.28 ms by sacrificing the success efficiency. Our Letter complements the experimental toolbox of harnessing both electron and nuclear spins in SiC for future quantum networks.

3.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613308

RESUMEN

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

4.
Appl Opt ; 62(16): 4203-4212, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706905

RESUMEN

We propose a method for coupling a tapered optical fiber to an inverted tapered SiN waveguide by fabricating a microfiber using 3D nanoprinting lithography. The microfiber consists of three parts: a tapered cladding cap, an S-bend, and a straight part, all composed of high-refractive-index material. Light is adiabatically coupled from the tapered fiber to the printed microfiber through the cladding cap. The light is then transmitted through the S-bend and the straight part with low loss and is finally coupled to the waveguide through the evanescent field. In the simulation, our design can achieve a high coupling efficiency (TE mode) of ∼97% at a wavelength of 1542 nm with a wide bandwidth of ∼768n m at the 1-dB cutoff criterion.

5.
Opt Express ; 31(10): 16348-16360, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157715

RESUMEN

The effective and convenient detection of single photons via advanced detectors with a large active area is becoming significant for quantum and classical applications. This work demonstrates the fabrication of a superconducting microstrip single-photon detector (SMSPD) with a millimeter-scale active area via the use of ultraviolet (UV) photolithography. The performances of NbN SMSPDs with different active areas and strip widths are characterized. SMSPDs fabricated by UV photolithography and electron beam lithography with small active areas are also compared from the aspects of the switching current density and line edge roughness. Furthermore, an SMSPD with an active area of 1 mm × 1 mm is obtained via UV photolithography, and during operation at 0.85 K, it exhibits near-saturated internal detection efficiency at wavelengths up to 800 nm. At a wavelength of 1550 nm, the detector exhibits a system detection efficiency of ∼5% (7%) and a timing jitter of 102 (144) ps, when illuminated with a light spot of ∼18 (600) µm in diameter, respectively.

6.
Natl Sci Rev ; 9(5): nwab122, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35668749

RESUMEN

Spin defects in silicon carbide (SiC) with mature wafer-scale fabrication and micro/nano-processing technologies have recently drawn considerable attention. Although room-temperature single-spin manipulation of colour centres in SiC has been demonstrated, the typically detected contrast is less than 2[Formula: see text], and the photon count rate is also low. Here, we present the coherent manipulation of single divacancy spins in 4H-SiC with a high readout contrast ([Formula: see text]) and a high photon count rate (150 kilo counts per second) under ambient conditions, which are competitive with the nitrogen-vacancy centres in diamond. Coupling between a single defect spin and a nearby nuclear spin is also observed. We further provide a theoretical explanation for the high readout contrast by analysing the defect levels and decay paths. Since the high readout contrast is of utmost importance in many applications of quantum technologies, this work might open a new territory for SiC-based quantum devices with many advanced properties of the host material.

7.
Phys Rev Lett ; 128(18): 180502, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594113

RESUMEN

Twin-field quantum key distribution (TFQKD) promises ultralong secure key distribution which surpasses the rate distance limit and can reduce the number of the trusted nodes in long-haul quantum network. Tremendous efforts have been made toward implementation of TFQKD, among which, the secure key with finite size analysis can distribute more than 500 km in the lab and in the field. Here, we demonstrate the sending-or-not-sending TFQKD experimentally, achieving a secure key distribution with finite size analysis over a 658 km ultra-low-loss optical fiber. Meanwhile, in a TFQKD system, any phase fluctuation due to temperature variation and ambient variation during the channel must be recorded and compensated, and all this phase information can then be utilized to sense the channel vibration perturbations. With our quantum key distribution system, we recovered the external vibrational perturbations generated by artificial vibroseis on both the quantum and frequency calibration link, and successfully located the perturbation position in the frequency calibration fiber with a resolution better than 1 km. Our results not only set a new distance record of quantum key distribution, but also demonstrate that the redundant information of TFQKD can be used for remote sensing of the channel vibration, which can find applications in earthquake detection and landslide monitoring besides secure communication.

8.
Opt Express ; 29(7): 11021-11036, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820223

RESUMEN

Superconducting nanowire single-photon detectors (SNSPDs) have attracted remarkable interest for visible and near-infrared single-photon detection due to their outstanding performance. However, conventional SNSPDs are generally used as binary photon-counting detectors. Another important characteristic of light, i.e., polarization, which can provide additional information of the object, has not been resolved using the standalone SNSPD. In this work, we present a first prototype of the polarimeter based on a four-pixel superconducting nanowire array, capable of resolving the polarization state of linearly-polarized light at the single-photon level. The detector array design is based on a division of focal plane configuration in which the orientation of each nanowire division (pixel) is offset by 45°. Each single nanowire pixel operates as a combination of a photon detector and almost linear polarization filter, with an average polarization extinction ratio of ∼10. The total system detection efficiency of the array is ∼1% at a total dark count rate of 680 cps, with a timing jitter of 126 ps, when the detector array is free-space coupled and illuminated with 1550-nm photons. The mean errors of the measured angle of polarization and degree of linear polarization were about -3° and 0.12, respectively. Furthermore, we successfully demonstrated polarization imaging at low-light level using the proposed detector. Our results pave the way for the development of a single-photon sensitive, fast, and large-scale integrated polarization polarimeter or imager. Such detector may find promising application in photon-starved polarization resolving and imaging with high spatial and temporal resolution.

9.
Opt Lett ; 46(5): 1049-1052, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649654

RESUMEN

We report a compact, scalable, and high-performance superconducting nanowire single-photon detector (SNSPD) array by using a multichannel optical fiber array-coupled configuration. For single pixels with an active area of 18 µm in diameter and illuminated at the telecom wavelength of 1550 nm, we achieved a pixel yield of 13/16 on one chip, an average system detection efficiency of 69% at a dark count rate of 160 cps, a minimum timing jitter of 74 ps, and a maximum count rate of ∼40Mcps. The optical crosstalk coefficient between adjacent channels is better than -60dB. The performance of the fiber array-coupled detectors is comparable with a standalone detector coupled to a single fiber. Our method is promising for the development of scalable, high-performance, and high-yield SNSPDs.

10.
Nature ; 578(7794): 240-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051600

RESUMEN

A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

11.
Opt Express ; 26(22): 29471-29481, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470110

RESUMEN

We report two-photon interferences on a silica-on-silicon chip of Mach-Zehnder interferometer using telecommunication-band correlated photon pairs. The photon pairs were generated by spontaneous four-waving mixing process in a dispersion-shifted fiber. The integrated chip, which was fabricated by standard silica-on-silicon planar lightwave circuit technology, contained a Mach-Zehnder interferometer with a thermo-optic phase shifter. The insertion loss of the interferometer was less than 1 dB. We demonstrated two-photon interferences with both degenerate- and non-degenerate-frequency photon pairs on the Mach-Zehnder interferometer chip. A high fringe visibility was achieved in the interference with nondegenerate-frequency photons. Properties of quantum interference were demonstrated in the interference with degenerate-frequency photon pairs, which is an important way to manipulate the quantum state. These results show great potential of silica-on-silicon photonic chips in applications for the fiber-chip scheme in quantum networks.

12.
Phys Rev Lett ; 121(10): 100502, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30240268

RESUMEN

Periodically driven systems have displayed a variety of fascinating phenomena without analogies in static systems, which enrich the classification of quantum phases of matter and stimulate a wide range of research interests. Here, we employ discrete-time quantum walks to investigate a nontrivial topological effect unique to a two-dimensional periodically driven system: chiral edge states can exist at the interface of Floquet insulators whose Chern numbers vanish. Thanks to a resource-saving and flexible fiber-loop architecture, we realize inhomogeneous two-dimensional quantum walks up to 25 steps, over an effective 51×51 lattice with tunable local parameters. Spin-polarized chiral edge states are observed at the boundary of two distinct quantum walk domains. Our results contribute to establishing a well-controlled platform for exploring nontrivial topological phases.

13.
Phys Rev Lett ; 117(19): 190501, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27858431

RESUMEN

Measurement-device-independent quantum key distribution (MDIQKD) with the decoy-state method negates security threats of both the imperfect single-photon source and detection losses. Lengthening the distance and improving the key rate of quantum key distribution (QKD) are vital issues in practical applications of QKD. Herein, we report the results of MDIQKD over 404 km of ultralow-loss optical fiber and 311 km of a standard optical fiber while employing an optimized four-intensity decoy-state method. This record-breaking implementation of the MDIQKD method not only provides a new distance record for both MDIQKD and all types of QKD systems but also, more significantly, achieves a distance that the traditional Bennett-Brassard 1984 QKD would not be able to achieve with the same detection devices even with ideal single-photon sources. This work represents a significant step toward proving and developing feasible long-distance QKD.

14.
Phys Rev Lett ; 116(24): 240502, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367371

RESUMEN

Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

15.
Phys Rev Lett ; 113(19): 190501, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25415890

RESUMEN

Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit/s. Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...