Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 266: 122353, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39241380

RESUMEN

Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, blaCTX-M and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments.

2.
Environ Sci Technol ; 58(15): 6781-6792, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560895

RESUMEN

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Combinación Trimetoprim y Sulfametoxazol , Farmacorresistencia Microbiana , Bacterias
3.
Environ Pollut ; 346: 123547, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387549

RESUMEN

Plastics ranging from nano-scale to micron-scale are frequently ingested by many marine animals. These particles exhibit biotoxicity and additionally perform as vectors that convey and amass adsorbed chemicals within organisms. Meanwhile, the frequency of detection of the benzophenone-3 and ciprofloxacin can be adsorbed on plastic particles, then accumulated in bivalves, causing biotoxicity. To understand their unknown accumulative kinetics in vivo affected by different plastic sizes and toxic effect from co-exposure, several scenarios were set up in which the mode organism were exposed to 0.6 mg/L of polystyrene carrying benzophenone-3 and ciprofloxacin in three sizes (300 nm, 38 µm, and 0.6 mm). The live Asian green mussels were chosen as mode organism for exposure experiments, in which they were exposed to environments with plastics of different sizes laden with benzophenone-3 and ciprofloxacin, then depurated for 7 days. The bioaccumulation and depuration kinetics of benzophenone-3 and ciprofloxacin were measured using HPLC-MS/MS after one week of exposure and depuration. Meanwhile, their toxic effect were investigated by measuring the changes in six biomarkers (condition index, reactive oxygen species, catalase, glutathione, lipid peroxidation, cytochrome P450 and DNA damage). The bioconcentration factors in mussels under different exposure conditions were 41.48-111.75 for benzophenone-3 and 6.45 to 12.35 for ciprofloxacin. The results suggested that microplastics and nanoplastics can act as carriers to increase bioaccumulation and toxicity of adsorbates in mussels in a size-dependent manner. Overproduction of reactive oxygen species caused by microplastics and nanoplastics led to increased DNA damage, lipid peroxidation, and changes in antioxidant enzymes and non-enzymatic antioxidants during exposure. Marked disruption of antioxidant defenses and genotoxic effects in mussels during depuration indicated impaired recovery. Compared to micron-scale plastic with sizes over a hundred micrometers that had little effect on bivalve bioaccumulation and toxicity, nano-scale plastic greatly enhanced the biotoxicity effect.


Asunto(s)
Benzofenonas , Perna , Contaminantes Químicos del Agua , Animales , Microplásticos , Antioxidantes/farmacología , Plásticos/toxicidad , Bioacumulación , Especies Reactivas de Oxígeno , Ciprofloxacina/toxicidad , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 887: 163781, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37149193

RESUMEN

During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.


Asunto(s)
COVID-19 , Compuestos de Amonio Cuaternario , Humanos , Cloruro de Amonio , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Genes Bacterianos , Plásmidos
5.
Water Res ; 240: 120086, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257295

RESUMEN

Emerging contaminants can accelerate the transmission of antibiotic resistance genes (ARGs) from environmental bacteria to human pathogens via plasmid conjugation, posing a great challenge to the public health. Although the toxic effects of per/polyfluoroalkyl substances (PFAS) as persistent organic pollutants have been understood, it is still unclear whether and how PFAS modulate the transmission of ARGs. In this study, we for the first time reported that perfluorooctanoic acid (PFOA), perfluorododecanoic acid (PFDoA) and ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX) at relatively low concentrations (0.01, 0.1 mg/L) promoted the conjugative transfer of plasmid RP4 within Escherichia coli, while the plasmid conjugation was inhibited by PFOA, PFDoA and GenX at relatively high concentrations (1, 10 mg/L). The non-unidirectional conjugation result was ascribed to the co-regulation of ROS overproduction, enhanced cell membrane permeability, shortage of energy support as well as l-arginine pool depletion. Taking the well-known PFOA as an example, it significantly enhanced the conjugation frequency by 1.4 and 3.4 times at relatively low concentrations (0.01, 0.1 mg/L), respectively. Exposure to PFOA resulted in enhanced cell membrane permeability and ROS overproduction in donor cells. At high concentrations of PFOA (1, 10 mg/L), although enhanced oxidative stress and cell membrane permeability still occurred, the ATP contents in E. coli decreased, which contributed to the inhibited conjugation. Transcriptome analysis further showed that the expression levels of genes related to arginine biosynthesis (argA, argC, argF, argG, argI) and transport (artJ, artM, artQ) pathways were significantly increased. Intracellular l-arginine concentration deficiency were observed at high concentrations of PFOA. With the supplementary exogenous arginine, it was demonstrated that arginine upregulated conjugation transfer- related genes (trfAp, trbBp) and restores the cell number of transconjugants in PFOA-treated group. Therefore, the inhibited conjugation at high concentrations PFOA were attributed to the shortage of ATP and the depletion of L-arginine pool. These findings provide important insights into the effect environmental concentrations of PFAS on the conjugative transfer of ARGs, and update the regulation mechanism of plasmid conjugation, which is critical for the management of antibiotic resistance in aquatic environments.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacología , Escherichia coli/genética , Genes Bacterianos , Especies Reactivas de Oxígeno , Conjugación Genética , Farmacorresistencia Microbiana/genética , Plásmidos/genética , Estrés Oxidativo , Adenosina Trifosfato
6.
Environ Sci Technol ; 57(4): 1613-1624, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36653016

RESUMEN

Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.


Asunto(s)
Microbiota , Microcystis , Synechococcus , Fitoplancton , Calidad del Agua , Lagos/microbiología
7.
J Hazard Mater ; 430: 128492, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739673

RESUMEN

Monitoring and predicting the occurrence and dynamic distributions of emerging contaminants (ECs) in the aquatic environment has always been a great challenge. This study aims to explore the potential of fully utilizing the advantages of combining traditional process-based models (PBMs) and data-driven models (DDMs) with general water quality indicators in terms of improving the accuracy and efficiency of predicting ECs in aquatic ecosystems. Two representative ECs, namely Bisphenol A (BPA) and N, N-diethyltoluamide (DEET), in a tropical reservoir were chosen for this study. A total of 36 DDMs based on different input datasets using Artificial Neural Networks (ANN) and Random Forests (RF) were examined in three case studies. The models were applied in prognosis validation based on easily accessible data on water quality indicators. Our results revealed that all the models yielded good fits when compared to the observed data. These new insights into the advantages using the combination of traditional PBMs and DDMs with general water quality datasets help to overcome the constraints in terms of model accuracy and efficiency as well as technical and budget limitations due to monitoring surveys and laboratory experiments in the study of fate and transport of ECs in aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Indicadores de Calidad de la Atención de Salud , Contaminantes Químicos del Agua/análisis
8.
Water Res ; 217: 118418, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417822

RESUMEN

The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.


Asunto(s)
Cosméticos , Disruptores Endocrinos , Contaminantes Químicos del Agua , Ecosistema , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Humanos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
9.
Water Res ; 212: 118129, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121419

RESUMEN

Cyanobacterial blooms that produce toxins occur in freshwaters worldwide and yet, the occurrence and distribution patterns of many cyanobacterial secondary metabolites particularly in tropical regions are still not fully understood. Moreover, predictive models for these metabolites by using easily accessible water quality indicators are rarely discussed. In this study, we investigated the co-occurrence and spatiotemporal trends of 18 well-known and less-studied cyanobacterial metabolites (including [D-Asp3] microcystin-LR (DM-LR), [D-Asp3] microcystin-RR (DM-RR), microcystin-HilR (MC-HilR), microcystin-HtyR (MC-HtyR), microcystin-LA (MC-LA), microcystin-LF (MC-LF), microcystin-LR (MC-LR), microcystin-LW (MC-LW), microcystin-LY (MC-LY), microcystin-RR (MC-RR) and microcystin-WR (MC-WR), Anatoxin-a (ATX-a), homoanatoxin-a (HATX-a), cylindrospermospin (CYN), nodularin (NOD), anabaenopeptin A (AptA) and anabaenopeptin B (AptB)) in a tropical freshwater lake often plagued with blooms. Random forest (RF) models were developed to predict MCs and CYN and assess the relative importance of 22 potential predictors that determined their concentrations. The results showed that 11 MCs, CYN, ATX-a, HATX-a, AptA and AptB were found at least once in the studied water body, with MC-RR and CYN being the most frequently occurring, intracellularly and extracellularly. AptA and AptB were detected for the first time in tropical freshwaters at low concentrations. The metabolite profiles were highly variable at both temporal and spatial scales, in line with spatially different phytoplankton assemblages. Notably, MCs decreased with the increase of CYN, possibly revealing interspecific competition of cyanobacteria. The rapid RF prediction models for MCs and CYN were successfully developed using 4 identified drivers (i.e., chlorophyll-a, total carbon, rainfall and ammonium for MCs prediction; and chloride, total carbon, rainfall and nitrate for CYN prediction). The established models can help to better understand the potential relationships between cyanotoxins and environmental variables as well as provide useful information for making policy decisions.


Asunto(s)
Cianobacterias , Eutrofización , Microcistinas , Clorofila A , Toxinas de Cianobacterias , Lagos/análisis , Clima Tropical
10.
Chemosphere ; 286(Pt 3): 131735, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34385031

RESUMEN

Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 µm, plus two submicron-sized polystyrene microplastics (5 and 0.5 µm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Animales , Benzofenonas , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis
11.
Harmful Algae ; 106: 102054, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34154781

RESUMEN

Monitoring toxigenic cyanobacteria in freshwaters is of great importance due to the adverse health impacts on humans and aquatic organisms. Here we studied cyanobacterial occurrence and biodiversity in a drinking water reservoir in Tehran province, Iran. In total, nine different species representing three orders of Synechococcales, Oscillatoriales and Nostocales were isolated and classified into six families and seven genera ranging from 92.3% to 99.0% similarities in their partial 16S rDNA with GenBank sequences. The cultures were analyzed for cyanotoxins production by the Artemia salina bioassay, ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and also screened for the presence of marker genes involved in toxins production. Ethyl acetate extracts of three strains showed more than 50% mortality on A. salina larvae after 24 h at a concentration of 500 µg/ml. Production of at least one of the cyanotoxins, microcystin (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a), was detected in 6 of the strains. Seven MC variants with a total concentration of 130.6 ng/mg of biomass dry weight were detected for the strain Phormidium sp. UTMC6001 and molecular screening of the mcyE gene also confirmed the presence of this biomarker in its genome. Our study also revealed the production of CYN in a novel picocyanobacterial strain Cyanobium sp. UTMC6007 at 1.0 ng/mg of biomass dry weight. Considering the limited information on freshwater toxic cyanobacteria taxonomy in the Middle East, these findings will expand our knowledge and consequently aid in development of new water management policies in future.


Asunto(s)
Cianobacterias , Lagos , Biodiversidad , Cromatografía Liquida , Cianobacterias/genética , Irán , Filogenia , Espectrometría de Masas en Tándem
12.
Water Res ; 200: 117298, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102387

RESUMEN

We developed a comprehensive integrated water quality modeling approach towards a better understanding of the fate and transport of emerging contaminants and comprehensive assessment of their potential risks in a tropical reservoir. Two representative emerging contaminants, namely Bisphenol A (BPA) and N, N-diethyltoluamide (DEET), were selected for this study. Unlike the traditional water quality modeling approach, the target emerging contaminants were modelled in four multi-compartments and coupled to a 3D-dimensional eutrophication model to investigate their interactions with other water quality state variables. First, the integrated model was calibrated and validated in four multi-compartments against an observed dataset in 2014. Subsequently, the correlation analysis between emerging contaminants and general water quality parameters were conducted. The potential ecological risks in this reservoir were also assessed via the trophic state index (TSI) and coupled to a species sensitivity distribution (SSD)-Risk Quotient (RQ) method. Finally, the model was applied to describe the dynamics of the two emerging contaminants and examine the direct and indirect influences of other environmental factors on their multi-compartment distributions in the aquatic environment. The comprehensive approach provides new insights into dynamic modeling of the fate and transport of emerging contaminants, their interactions with other state variables as well as an assessment of their potential risks in aquatic ecosystems.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Ecosistema , Eutrofización , Contaminantes Químicos del Agua/análisis , Calidad del Agua
13.
J Hazard Mater ; 414: 125502, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33684822

RESUMEN

A coupled high-resolution hydrodynamic-particle tracking model was developed to study the spatiotemporal distribution and pathways of floating plastics in the coastal waters of equatorial Singapore. The coupled model was first calibrated and validated against the field measurements and then applied to explore impact of various prevailing wind and hydrodynamic conditions on fate and transport of the plastics. The results highlighted that the wind effect on the hydrodynamics is negligible, but it influences the transmissions of floating plastics significantly in the Singapore's coastal waters. The spatial and seasonal hotspots of plastic waste were identified, which were consistent with field observations when the windage ranged from 3% to 5%. A further evaluation of the predicted trajectories showed that plastic wastes released from the land could be transported approximately 70 km seaward within 72 h when the windage was 5%. Furthermore, it was also found that the effects of climate change and increasing plastic usage would aggravate plastic pollution and accelerate its transport. The established model can provide new insights into the spatiotemporal distribution and fate of plastic waste in the tropical coastal waters, which is useful to assist regulators in making policy decisions in response to the future climate change and plastic usage.

14.
Sci Total Environ ; 731: 139014, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32428751

RESUMEN

Analytical methods based on direct injection (DI) and solid phase extraction (SPE) coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC- MS/MS) were developed for the determination of anatoxin-a (ATX-a), cylindrospermopsin (CYN), and homoanatoxin-a (HATX-a) in freshwater samples impacted with cyanobacterial blooms. The presence of CYN in freshwater samples was detected and quantified based on direct injection method, while ATX-a and HATX-a could be determined by both DI and SPE-based methods. Matrix effects (ME) on the signal intensity of the cyanotoxins were systematically evaluated for both direct injection and SPE extract samples. CYN, ATX-a, and HATX-a suffered a significant suppression during UPLC-MS/MS. The selection of internal standards (ISs) for compensating/correcting the losses of target cyanotoxins during sample preparation and matrix effects in UPLC-MS/MS analyses were systematically evaluated. Acetaminophen-d4 (an isotopically labelled acetaminophen) is a suitable internal standard for correcting the ME on the signal intensity of ATX-a and HATX-a, while the use of L-phenylalanine-d5 or caffeine-d9 as IS for correcting ME of these toxins was not efficient, as expected. The method detection limit (MDL) for the target cyanotoxins ranged from 0.6 to 15 ng/L, which is sensitive enough to detect the presence of these toxins in cyanobacterial bloom freshwater. The developed methods were successfully applied for routine monitoring of the occurrence of these cyanotoxins in a local water body. Monitoring results depicted that ATX-a, CYN and HATX-a were ubiquitously detected in water samples, at concentrations ranging from 70 to 24,600 ng/L.


Asunto(s)
Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Alcaloides , Toxinas Bacterianas , Compuestos Bicíclicos Heterocíclicos con Puentes , Cromatografía Liquida , Toxinas de Cianobacterias , Agua Dulce/análisis , Microcistinas , Tropanos , Uracilo/análogos & derivados
15.
Environ Sci Process Impacts ; 20(7): 1030-1045, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29900462

RESUMEN

PPCPs and pesticides have been documented throughout the world over the years, yet relatively little is known about the factors affecting their spatial distribution and temporal change in order to know their potential risk to the ecosystem or human health in the future. In our study, 5 PPCPs and 9 pesticides were selected to study their occurrence, impact variables and potential risk in a drinking water reservoir in Yangtze Estuary and related drinking water treatment plants (DWTPs) in China. The detection results showed the presence of PPCPs and pesticides reflected in a large part of croplands and urban and built-up land in the adjacent basin. The discrepancy of concentration among the different PPCPs and pesticides was mainly decided by their application amount or daily usage. Then, the major factors regulating the occurrence of these contaminants in the surface water were found as the living expenditure attributed to food and medicine based on a correlation analysis. Also, the PPCPs were found to negatively correlate to the effectiveness of sewage management. The detection of the PPCPs and pesticides in DWTPs indicated that, except for atrazine and simazine, the removal percentages were increased significantly in advanced DWTPs. Moreover, risk assessment estimated by a Risk Quotient and Hazard Quotient showed that while caffeine, bisphenol A, estrone and simazine were at a high-risk level in the reservoir water, all of the contaminants detected posed no risk to human health through drinking water. It's possible that atrazine could pose a high risk to the ecosystem while simazine could pose a risk to human health in the future considering the increasing expenditure attributed to food.


Asunto(s)
Agua Potable/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Preparaciones Farmacéuticas/análisis , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , China , Estuarios , Humanos , Medición de Riesgo
16.
Environ Sci Technol ; 52(7): 3960-3967, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29502395

RESUMEN

The study investigated the occurrence and fate of seven benzophenone-type UV filters (i.e., 2,4-dihydroxybenzophenone (2,4OH-BP), 2,2',4,4'-tetrahydroxybenzophenone (2,2',4,4'OH-BP), 2-hydroxy-4-methoxybenzophenone (2OH-4MeO-BP), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone (2,2'OH-4,4'MeO-BP), 2,2'-dihydroxy-4-methoxybenzophenone (2,2'OH-4MeO-BP), 4-hydroxybenzophenone (4OH-BP), and 4,4'-dihyroxybenzophenone (4DHB)) in a tropical urban watershed consisting of five major tributaries that discharge into a well-managed basin. Total benzophenone concentrations (∑CBPs) varied from 19-230.8 ng L-1 in overlying bulk water, 48-115 ng L-1 in pore water, 295-5813 ng g-1 dry weight (d.w.) in suspended solids, and 6-37 ng g-1 d.w. in surficial sediments, respectively. The tributaries (∑CBPs: 19-231 ng L-1) were the main source of benzophenone compounds entering the basin (∑CBPs: 20-81 ng L-1). In the water column, the vertical concentration profile in the aqueous phase was uniform while concentrations in the suspended solids decreased with depth. Different distribution profiles were also identified for benzophenones in suspended solids and sediments. A preliminary risk assessment suggested that the seven BPs were unlikely to pose ecotoxicological risks to local aquatic organisms except for 2OH-4MeO-BP in the case of an intermittent release.


Asunto(s)
Protectores Solares , Contaminantes Químicos del Agua , Benzofenonas , Medición de Riesgo , Agua
17.
Environ Pollut ; 227: 397-405, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28486183

RESUMEN

Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4-55 ng/L), PFBA (1.0-23 ng/L), PFOS (1.5-24 ng/L) and PFOA (2.0-21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis , Clima Tropical , Agua
18.
Bioresour Technol ; 197: 329-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26342347

RESUMEN

There is limited information on the occurrence and removal of artificial sweeteners (ASs) in biological wastewater treatment plants, and in particular, the contribution of sorption and biodegradation to their removal. This study investigated the fate of ASs in both the aqueous and solid phases in a water reclamation plant (WRP). All the four targeted ASs, i.e. acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharine (SAC), were detected in both the aqueous and solid phases of raw influent and primary effluent samples. The concentrations of CYC and SAC in secondary effluent or MBR permeate were below their method detection limits. ACE and SUC were persistent throughout the WRP, whereas CYC and SAC were completely removed in biological treatment (>99%). Experimental results showed that sorption played a minor role in the elimination of the ASs due to the relatively low sorption coefficients (Kd), where Kd<500L/kg. In particular, the poor removal of ACE and SUC in the WRP may be attributed to their physiochemical properties (i.e. logKow<0 or logD<3.2) and chemical structures containing strong withdrawing electron functional groups in heterocyclic rings (i.e. chloride and sulfonate).


Asunto(s)
Ciclamatos/metabolismo , Sacarina/metabolismo , Aguas del Alcantarillado/química , Sacarosa/análogos & derivados , Edulcorantes/metabolismo , Tiazinas/metabolismo , Adsorción , Biodegradación Ambiental , Ciclamatos/química , Sacarina/química , Sacarosa/química , Sacarosa/metabolismo , Edulcorantes/química , Tiazinas/química
19.
Sci Total Environ ; 536: 955-963, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26138904

RESUMEN

Previous studies showed the presence of multiple emerging organic contaminants (EOCs) in urban surface waters of Singapore even though there are no obvious direct wastewater discharges. In this study, we investigated the occurrence and distribution of 17 pharmaceuticals and personal care products (PPCPs) and endocrine disruptive compounds (EDCs) in a tropical urban catchment of Singapore. Monthly samples were collected from a reservoir and its 5 upstream tributaries during a 16-month period. Analysis of samples showed all sites had measurable PPCP and EDC concentrations, with caffeine (33.9-2980 ng/L), salicylic acid (5-838 ng/L), acetaminophen (<4-485.5 ng/L), BPA (<2-919.5 ng/L) and DEET (13-270 ng/L) being the most abundant. Marked differences in concentrations of target analytes between the reservoir and upstream tributaries were observed, and were tentatively attributed to the spatial differences in source inputs, water dilution capacity as well as natural attenuation of EOCs. Significant correlations between EOCs and conductivity, dissolved oxygen, chlorophyll a, turbidity, nutrients and cumulative precipitation were observed. These factors appeared to affect the distribution and attenuation of EOCs, depending on their physicochemical properties. Rainfall also influenced the temporal distribution of caffeine, BPA, triclosan, fipronil and DEET in the reservoir. Ecological risk assessment showed that caffeine, acetaminophen, estrone, BPA, triclosan and fipronil may warrant further survey. In particular, BPA levels exceeded the literature-based Predicted No-Effect Concentration (PNEC) value, highlighting the need for source control and/or water remediation in this urban catchment.


Asunto(s)
Cosméticos/análisis , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis , Contaminantes Químicos del Agua/análisis , Singapur
20.
Wei Sheng Wu Xue Bao ; 55(3): 341-50, 2015 Mar 04.
Artículo en Chino | MEDLINE | ID: mdl-26065276

RESUMEN

OBJECTIVE: Our aim was to know response of spring bacteria and metabolic characteristics of sensitive bacteria to felt earthquake. METHODS: Water samples were collected from January 31 to December 31, 2012, during which period 5 felt earthquakes occurred and the epicenter was 100 kilometers away from the No. 10 Spring in Urumqi. We monitored the spring bacterial activities and function diversity changes from No. 10 Spring in Urumqi during the pre- and post-earthquake stages by using plate culture counting methods and BIOLOG GEN III bacteria plate. RESULTS: The spring bacterial numbers presented stochastic dynamic changes through the year. The culturable bacteria numbers and average well color development (AWCD ) of carbon source utilization of bacterial community were higher after the earthquake. Besides, there were some correlations with magnitude and epicenter distance of earthquake. The main carbon source utilization types of sensitive bacteria group for felt earthquake were sugar alcohol at the No. 10 Spring. CONCLUSION: The results indicated that the BIOLOG GEN III plate can be used for spring bacterial metabolism diversity research. Culturable bacteria numbers and carbon source utilization of bacterial communities showed some reflecting earthquake law.


Asunto(s)
Bacterias/crecimiento & desarrollo , Ecosistema , Agua Dulce/microbiología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Carbono/análisis , Carbono/metabolismo , China , Recuento de Colonia Microbiana , Terremotos , Agua Dulce/química , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA