Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(11): 7528-7539, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440272

RESUMEN

Advanced oxidation processes (AOPs) based on PMS have been used to degrade various refractory pollutants such as drugs, endocrine disruptors, dyes and perfluorinated compounds due to their wide application range, mild reaction conditions, fast reaction rate and simple operation. In this study, tetracycline hydrochloride (TCH) was degraded based on this method. Magnetic MnFe2O4/ZIF-67 nanocomposites were successfully prepared by a hydrothermal method, which combined the magnetic separation characteristics of MnFe2O4 with the high catalytic activity of ZIF-67 and were used to activate peroxymonosulfate (PMS) to efficiently degrade TCH. Satisfactory removal results were obtained with this simple and readily available material, with 82.6% of TCH removed in 15 min. The effect of different conditions on the degradation effect was investigated, and the optimal catalyst concentration and PMS concentration were determined to be 0.1 g L-1 and 0.2 g L-1, respectively, and all had good degradation effects at pH 5 to 10. XPS, impedance test and radical quenching experiments were used to investigate the degradation mechanism. The results showed that sulfate radical (SO4-˙) was the main active species in the degradation process. In addition, the catalyst has good cyclic stability, which provides a new idea for the removal of TCH in wastewater. It is worth mentioning that the catalyst also has good degradation property for other pollutants.

2.
Colloids Surf B Biointerfaces ; 222: 113058, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36473371

RESUMEN

In order to solve the limitation of tumor microenvironment on the anticancer effect of nanozymes, a multifunctional nanoenzyme Co/La-PB@MOF-199/GOx was designed in this work. By doping Co2+ and La3+ in different proportions, Co/La-PB with the optimal photothermal-enhanced catalytic performance was screened, which can catalyze H2O2 to generate more hydroxyl radicals (•OH) and oxygen, showing peroxidase (POD)-like and catalase(CAT)-like property. Through MOF-199 coating and loading glucose oxidase (GOx), a multifunctional nanoenzyme Co/La-PB@MOF-199/GOx was achieved. Due to the pH response of MOF-199, GOx can be accurately released into tumors to catalyze the reaction of glucose and oxygen to produce H2O2. In this process, the oxygen consumption can be compensated by the CAT-like property to realize continuous consumption of glucose and self-supply of H2O2 to continuously produce •OH. In the presence of high oxidation state metal ions (Co3+ and Fe3+), GSH consumption is accelerated to avoid weakening of •OH, showing the glutathione oxidase (GPx-like) activity. Besides, magnetic resonance imaging (MRI) experiments showed the potential application in imaging guided therapy. In vivo anti-tumor experiments showed a satisfactory anti-cancer effect through multi-enzymatic activities.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Neoplasias/terapia , Glucosa , Glucosa Oxidasa , Oxígeno , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...