Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116373, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653023

RESUMEN

Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cromo , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Hydrocharitaceae , Geobacter/metabolismo , Electricidad
2.
Int J Biol Macromol ; 266(Pt 1): 131078, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521309

RESUMEN

Iron decoration has been recognized as one of the most important paths to enhance contaminant adsorption by carbon-based composites. In this study, varying amounts of Fe (II) are used for the modification of graphene oxide chitosan (GOCS) materials to assess the impact of iron oxide (FeOx) morphology on the composites and their efficiency in arsenic (As) removal. Results show that incorporating 0.08 mol Fe(II) into GOCS yields better As removal performance, leading to a remarkable enhancement by 5 times for As(V) and 6 times for As(III). The iron minerals in the material consist of goethite (FeO(OH)) and magnetite (Fe3O4), with FeO(OH) playing a predominant role in As removal through the complexation and electrostatic attraction of -OH and Fe - O groups. The adsorption capacity for As (Qe) decreases with the increasing pH and the mass and volume ratio (m/v) but increases with the increasing initial concentration (C0). Besides, the presence of SO42- and HPO42- can significantly reduce As removal by the FeOx-modified GOCS. Under the conditions of pH = 3, m/v = 1.0 g/L, and C0 = 10 mg/L, a maximum Qe value reaches 61.94 mg/g. The adsorption is well-fitted to a pseudo-second-order kinetic model and is an endothermic, spontaneous, and monolayer adsorption process.


Asunto(s)
Arsénico , Quitosano , Grafito , Contaminantes Químicos del Agua , Grafito/química , Quitosano/química , Arsénico/química , Adsorción , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno
3.
Environ Sci Pollut Res Int ; 31(12): 18362-18378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353817

RESUMEN

In recent years, the treatment of organic pollutants has become a global concern due to the threat to human health posed by emerging contaminants, especially antibiotic contamination. Advanced oxidation processes (AOPs) can solve the organic pollution problem well, which have been identified as a promising solution for the treatment of hard-to-handle organic compounds including antibiotic contaminants. Layered double hydroxides (LDHs) are excellent catalysts because of their flexible tunability, favorable thermal stability, abundant active sites, and facile exchangeability of intercalated anions. This paper conducted a systematic review of LDHs-based materials used for common antibiotic removal by three significant AOP technologies, such as photocatalysis, the Fenton-like processes, and peroxymonosulfate catalysis. The degradation effects studied in various studies were reviewed, and the mechanisms were discussed in detail based on the type of AOPs. Finally, the challenges and the application trends of AOPs that may arise were prospected. The aim of this study is to suggest ways to provide practical guidance for the screening and improvement of LDH materials and the rational selection of AOPs to achieve efficient antibiotic degradation. This could lead to the development of more efficient and environmentally friendly materials and processes for degrading antibiotics, with significant implications for our ecological conservation by addressing water pollution.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Antibacterianos , Contaminantes Químicos del Agua/análisis , Hidróxidos , Oxidación-Reducción
4.
Ecotoxicol Environ Saf ; 270: 115929, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194810

RESUMEN

The remediation of water contaminated with bisphenol A (BPA) has gained significant attention. In this study, a hydrothermal composite activator of Cu3Mn-LDH containing coexisting phases of cupric nitrate (Cu(NO3)2) and manganous nitrate (Mn(NO3)2) was synthesized. Advanced oxidation processes were employed as an effective approach for BPA degradation, utilizing Cu3Mn-LDH as the catalyst to activate peroxymonosulfate (PMS). The synthesis of the Cu3Mn-LDH material was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). According to the characterization data and screening experiments, Cu3Mn-LDH was selected as the best experimental material. Cu3Mn-LDH exhibits remarkable catalytic ability with PMS, demonstrating good degradation efficiency of BPA under neutral and alkaline conditions. With a PMS dosage of 0.25 g·L-1 and Cu3Mn-LDH dosage of 0.10 g·L-1, 10 mg·L-1 BPA (approximately 17.5 µM) can be completely degraded within 40 min, of which the TOC removal reached 95%. The reactive oxygen species present in the reaction system were analyzed by quenching experiments and EPR. Results showed that sulfate free radicals (SO4•-), hydroxyl free radicals (•OH), superoxide free radicals (•O2-), and nonfree radical mono-oxygen were generated, while mono-oxygen played a key role in degrading BPA. Cu3Mn-LDH exhibits excellent reproducibility, as it can still completely degrade BPA even after four consecutive cycles. The degradation intermediates of BPA were detected by GCMS, and the possible degradation pathways were reasonably predicted. This experiment proposes a nonradical degradation mechanism for BPA and analyzes the degradation pathways. It provides a new perspective for the treatment of organic pollutants in water.


Asunto(s)
Compuestos de Bencidrilo , Peróxidos , Fenoles , Agua , Reproducibilidad de los Resultados , Peróxidos/química , Radicales Libres , Oxígeno
5.
J Environ Manage ; 345: 118596, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421722

RESUMEN

The compost-derived humic acids (HA) and fulvic acids (FA) contain abundant active functional groups with strong redox capacity, which can function as an electron shuttles for promoting the reduction of heavy metals, thus changing the form of the pollutants in the environment and reducing their toxicity. Therefore, in this study, UV-Vis, FTIR, 3D-EEM, electrochemical analysis were applied to study the spectral characteristics and electron transfer capacity (ETC) of HA and FA. Upon analysis, the results showed an increasing trend of ETC and humification degree (SUVA254) for both HA and FA during composting. However, the aromatic degree (SUVA280) of HA was higher than FA. After 7 days of culture, 37.95% of Cr (Ⅵ) was reduced by Shewanella oneidensis MR-1 (MR-1) alone. Whereas, only if HA or FA existed, the diminution of Cr (Ⅵ) reached 37.43% and 40.55%, respectively. However, the removal rate of Cr (Ⅵ) by HA/MR-1 and FA/MR-1 increased to 95.82% and 93.84% respectively. It indicated that HA and FA acted as electron shuttles, mediating the transfer of electrons between MR-1 and the final electron acceptor, effectively facilitating the bioreduction of Cr (Ⅵ) to Cr (Ⅲ) and also determined via correlation analysis. This study suggested compost-derived HA and FA coupling with MR-1 exhibited excellent performance for the bioreduction of Cr (Ⅵ) to Cr (Ⅲ).


Asunto(s)
Compostaje , Shewanella , Cromo , Oxidación-Reducción , Sustancias Húmicas/análisis
6.
RSC Adv ; 13(28): 19288-19300, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377869

RESUMEN

Pb(ii) adsorption by MnO2/MgFe-layered double hydroxide (MnO2/MgFe-LDH) and MnO2/MgFe-layered metal oxide (MnO2/MgFe-LDO) materials was experimentally studied in lab-scale batches for remediation property and mechanism analysis. Based on our results, the optimum adsorption capacity for Pb(ii) was achieved at the calcination temperature of 400 °C for MnO2/MgFe-LDH. Langmuir and Freundlich adsorption isotherm models, pseudo-first-order and pseudo-second-order kinetics, Elovich model, and thermodynamic studies were used for exploring the Pb(ii) adsorption mechanism of the two composites. In contrast to MnO2/MgFe-LDH, MnO2/MgFe-LDO400 °C has a stronger adsorption capacity and the Freundlich adsorption isotherm model (R2 > 0.948), the pseudo-second-order kinetic model (R2 > 0.998), and the Elovich model (R2 > 0.950) provide great fits to the experimental data, indicating that the adsorption occurs predominantly via chemisorption. The thermodynamic model suggests that MnO2/MgFe-LDO400 °C is spontaneously heat-absorbing during the adsorption process. The maximum adsorption capacity of MnO2/MgFe-LDO400 °C for Pb(ii) was 531.86 mg g-1 at a dosage of 1.0 g L-1, pH of 5.0, and temperature of 25 °C. Through characterization analysis, the main mechanisms involved in the adsorption process were precipitation action, complexation with functional groups, electrostatic attraction, cation exchange and isomorphic replacement, and memory effect. Besides, MnO2/MgFe-LDO400 °C has excellent regeneration ability in five adsorption/desorption experiments. The above results highlight the powerful adsorption capacity of MnO2/MgFe-LDO400 °C and may inspire the development of new types of nanostructured adsorbents for wastewater remediation.

7.
Environ Pollut ; 331(Pt 1): 121846, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211225

RESUMEN

Hyperaccumulator Amaranthus hypochondriacus L. has huge potential in the remediation of cadmium (Cd)-contaminated soils and is necessary to understand the mechanism of Cd uptake by the roots. In this study, the mechanism of Cd uptake into the root of A. hypochondriacus was investigated using the non-invasive micro-test technology (NMT) by analyzing the rate of Cd2+ fluxes at different regions of the root tip; also we assessed the impact of different channel blockers and inhibitors on the Cd accumulation in the roots, the real-time Cd2+ fluxes, and the distribution of Cd along the roots. The results showed that the Cd2+ influx was greater near the root tip (within 100 µm of the tip). All the inhibitors, ion-channel blockers, and metal cations had different degrees of inhibition on the absorption of Cd in the roots of A. hypochondriacus. The net Cd2+ flux in the roots was significantly decreased by the Ca2+ channel blockers lanthanum chloride (LaCl3) by up to 96% and verapamil by up to 93%; as for the K+ channel blocker tetraethylammonium (TEA), it also caused a 68%-reduction on the net Cd2+ flux in the roots. Therefore, we infer that the uptake by A. hypochondriacus roots is mainly through the Ca2+ channels. The Cd absorption mechanism appears to be related to the synthesis of plasma membrane P-type ATPase and phytochelatin (PC), which is reflected by the inhibition of Ca2+ upon addition of inorganic metal cations. In conclusion, access of Cd ions into the roots of A. hypochondriacus is achieved through various ion channels, with the most important being the Ca2+ channel. This study will further enhance the literature regarding Cd uptake and pathways of membrane transport in roots of Cd hyperaccumulators.


Asunto(s)
Amaranthus , Contaminantes del Suelo , Cadmio/análisis , Amaranthus/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Metales/metabolismo , Biodegradación Ambiental
8.
Artículo en Inglés | MEDLINE | ID: mdl-36673822

RESUMEN

Phytoextraction using Celosia argentea Linn. by Mn pretreatment can potentially decontaminate Cd-contaminated soils. However, the mechanism that accelerates the Cd bioaccumulation is still unknown. In order to study the effect and mechanism of Mn pretreatment on Cd bioaccumulation in C. argentea, the hydroponic experiments were set to determine the chlorophyll content, antioxidant enzyme activity, malondialdehyde content, and root exudation of C. argentea. The results indicated that after seven days of Mn pretreatment, both the biomass and Cd concentrations in plants increased compared to the control group. One of the mechanisms for this was the improvement in the physiological resistance of C. argentea following pretreatment with Mn. Compared with Cd stress alone, Mn pretreatment increased photosynthesis and reduced membrane lipid peroxidation. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were significantly reduced in leaves of C. argentea after Mn pretreatment through the reduction in the production of reactive oxygen species. In addition, Mn promoted the exudation of organic acids in the roots of C. argentea. The contents of citric and malic acids increased by 55.3% and 26.4%, respectively, which may be another important reason for Mn pretreatment increasing Cd bioaccumulation in C. argentea. Therefore, the present work shows that the pretreatment of seedlings with Mn can provide a meaningful strategy to improve the remediation efficiency of Cd-contaminated soils by C. argentea.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Catalasa , Antioxidantes , Superóxido Dismutasa , Plantones , Suelo , Raíces de Plantas/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
9.
J Hazard Mater ; 443(Pt A): 130206, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36279652

RESUMEN

Understanding the molecular mechanism of tolerance to heavy metals in hyperaccumulators is important for improving the efficiency of phytoremediation and is interesting for evolutionary studies on plant adaption to abiotic stress. Celosia argentea Linn. was recently discovered to hyperaccumulate both manganese (Mn) and cadmium (Cd). However, the molecular mechanisms underlying Mn and Cd detoxification in C. argentea are poorly understood. Laboratory studies were conducted using C. argentea seedlings exposed to 360 µM Mn and 8.9 µM Cd hydroponic solutions. Plant leaves were analyzed using transcriptional and metabolomic techniques. A total of 3960 differentially expressed genes (DEGs) in plants were identified under Cd stress, among which 17 were associated with metal transport, and 10 belonged to the ATP transporter families. Exposures to Mn or Cd led to the differential expression of three metal transport genes (HMA3, ABCC15, and ATPase 4). In addition, 33 and 77 differentially expressed metabolites (DEMs) were identified under Mn and Cd stresses, respectively. Metabolic pathway analysis showed that the ABC transporter pathway was the most affected in Mn/Cd exposed seedlings. Conjoint transcriptome and metabolome analysis showed that the glutathione (GSH) metabolic pathway was over-represented in the KEGG pathway of both DEGs and DEMs. Our results confirm that the ABC transporter and GSH metabolic pathways play important roles in Mn and Cd detoxification. These findings provide new insight into the molecular mechanisms of tolerance to Mn and Cd toxicity in plants.


Asunto(s)
Cadmio , Celosia , Cadmio/toxicidad , Cadmio/metabolismo , Celosia/metabolismo , Manganeso/toxicidad , Manganeso/metabolismo , Transcriptoma , Plantones/metabolismo , Plantas/metabolismo , Metaboloma , Transportadoras de Casetes de Unión a ATP/metabolismo , Raíces de Plantas/metabolismo
10.
Environ Sci Pollut Res Int ; 30(1): 1189-1200, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35915304

RESUMEN

Extreme mining activities can risk human life and the environment via potentially toxic elements (PTEs) in road dust, thus making their quantification and assessment unavoidable. For this purpose, we collected 50 fine road dust samples from the Chehe mining area, China, to quantify the level of contamination and ecological and health risks of PTEs comprising As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, and Zn, and their quantitative source apportionment using the positive matrix factorization model (PMF). Results indicated that the average values of Cd, Sb, As, Zn, Pb, and Cu in road dust were 1555.21, 586.78, 429.68, 429.43, 72.88, and 26.61 times higher than their background values. Pollution indices of PTEs revealed a strong level of contamination by Cd, Sb, As, Zn, and Pb, which were extremely polluted in the study area. The average values of the Nemerow integrated risk index (NIRI) and potential ecological risk index (RI) were 104.09 and 86.49 times the highest risk limit, respectively, which are extremely high ecological risks. Based on PMF for quantitative source identification, mining activities and fuel combustion were the main sources of PTEs in road dust contributing 57.25% and 35.95%, respectively. Furthermore, the health risk assessment indicated that Sb, As, Cr, Cd, and Pb in the Chehe road dust could lead to significantly serious carcinogenic and non-carcinogenic risks to both children and adults. The results of this study could be used to opt for strategies to mitigate the ecological and human health risk in the mining area of Hechi, China.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Polvo/análisis , Cadmio , Plomo , China , Medición de Riesgo , Ciudades , Contaminantes del Suelo/análisis
11.
RSC Adv ; 12(40): 25833-25843, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36199607

RESUMEN

The use of MnO2/MgFe-layered double hydroxide (MnO2/MgFe-LDH) and MnO2/MgFe-layered double oxide (MnO2/MgFe-LDO400 °C) for arsenic immobilization from the aqueous medium is the subject of this research. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to characterise MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C. Based on our developed method, MnO2 was spread on the clay composites' surfaces in the form of a chemical bond. The clay composite exhibited a good adsorption effect on arsenic. The experimental findings fit the pseudo-second-order model well, indicating that the chemisorption mechanism played a significant role in the adsorption process. Furthermore, the Freundlich model suited the adsorption isotherm data of all adsorbents well. The recycling experiment showed that MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C exhibited good stability and reusability. In summary, MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C are promising for developing processes for efficient control of the pollutant arsenic.

12.
Ecotoxicol Environ Saf ; 240: 113706, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659702

RESUMEN

Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Iones , Plantas , Tecnología
13.
Environ Pollut ; 269: 116189, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33288295

RESUMEN

The Lijiang River is of great ecological and environmental importance for Guilin City, which is located in the karst area of southeast China. Given its importance, a detailed evaluation of the heavy metals (HMs) in the river sediment is required. For the first time, 61 sediment samples were collected along the entire Lijiang River to determine pollution level and ecological risk posed by 10 HMs (Co, Cr, Cu, Mn, Ni, Pb, Zn, As, Hg, and Cd). These were assessed using the geo-accumulation index, potential ecological risk index, and modified degree of contamination. The results showed that the mean concentrations of the majority of HMs exceeded their corresponding background values and followed the trend: midstream > downstream > upstream. Based on the spatial distributions and pollution indices of the 10 HMs, the Lijiang River was found to have a high accumulation of Cd, Hg, Zn, and Pb in the sediments. The midstream area was the most polluted with respect to Cd and Hg, and also posed a relatively higher potential ecological risk than the downstream and upstream areas. The sources of the assessed HMs were inferred based on a correlation analysis and principal component analysis, which identified both natural and anthropogenic sources. A higher pollution potential was associated with Cd, Hg, Pb, and Zn in the midstream and downstream areas due to higher organic and carbonate content, urbanization, agricultural activities, and leisure activities (e.g., boating and cruises). In contrast, natural erosion and weathering processes were responsible for the HM concentrations in the upstream area. The findings of this study will help the local authorities to protect the important water resource of the Lijiang River.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Ciudades , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 27(22): 27762-27772, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32399884

RESUMEN

A biosurfactant (BS) is a surface-active metabolite that is secreted by microbial metabolism, and can be used as a substitute for chemically synthesized surfactants. The first and most critical step to the successful application of BSs is to isolate bacterial strains with strong BS-producing capabilities. In this study, a BS-producing Serratia marcescens ZCF25 was isolated from the sludge of an oil tanker. Through polyphasic characterization using Fourier-transform infrared spectroscopy, thin layer chromatography, and gas chromatography-mass spectrometry, the produced BS was classified as a lipopeptide; it can decrease the water surface tension from 72.0 to 29.50 mN m-1 and has a critical micelle concentration of 220 mg/L. The BS showed a high tolerance over a wide range of pH (2-12), temperature (50-100 °C), and salinity (10-100 g/L). Furthermore, the inoculation of S. marcescens ZCF25 with fracturing flowback fluids could significantly (P < 0.05) reduce the chemical oxygen demand, concentration of alkanes, and concentration of polycyclic aromatic hydrocarbons, with removal efficiencies of 48.9%, 65.57%, and 64%, respectively. This is the first study on the application of BS-producing S. marcescens to treat fracturing flowback fluids. S. marcescens ZCF25 is a promising candidate for use in various industrial and bioremediation applications. Graphical abstract.


Asunto(s)
Serratia marcescens , Aguas del Alcantarillado , Biodegradación Ambiental , Tensión Superficial , Tensoactivos
15.
Int J Phytoremediation ; 22(4): 383-391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31522543

RESUMEN

To select suitable plants for phytoextraction of Cd-contaminated soils, we evaluated the phytoextraction potential of five local Cd-accumulators: Amaranthus hypochondriacus L., Solanum nigrum L., Phytolacca acinosa Roxb., Celosia argentea L., and Sedum spectabile Boreau. The plants were grown in three naturally contaminated soils with different total Cd levels (1.57, 3.89, and 22.4 mg kg-1). Throughout the experimental period, no plants showed any visible symptoms of metal toxicity. The Cd uptake of C. argentea was the greatest in the S-YS soil (105 µg plant-1) and among the greatest in the S-HC soil and S-TJ soil. Besides, C. argentea exhibited the highest bioconcentration factor (12.3) in three soils. To improve the phytoextraction efficiency of C. argentea, we applied four low molecular weight organic acids (LMWOAs): tartaric acid, malic acid, oxalic acid, and citric acid. Malic acid was more effective in enhancing Cd uptake by C. argentea than the other LMWOAs. Therefore, C. argentea may be a potential choice in actual remediation projects. Moreover, application of malic acid is an effective way to increase the phytoextraction efficiency of C. argentea.


Asunto(s)
Cadmio , Contaminantes del Suelo , Biodegradación Ambiental , Peso Molecular , Suelo
16.
Chemosphere ; 235: 995-1006, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31561316

RESUMEN

The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.


Asunto(s)
Biodegradación Ambiental , Cromo/toxicidad , Contaminantes Ambientales/metabolismo , Bifenilos Polibrominados/metabolismo , Pycnoporus/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Oxidación-Reducción , Pycnoporus/efectos de los fármacos , Pycnoporus/crecimiento & desarrollo
17.
Sci Rep ; 9(1): 12873, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492913

RESUMEN

In this study, the contribution of substrates microorganisms in three different constructed wetlands (CWs) to Cr(VI) purification was discussed. In addition, the microbial communities in the substrate of different CWs were characterized, and rhizosphere Cr(VI) reducing bacteria was also identified. The results showed that microorganisms could improved Cr(VI) removal to 76.5%, and result in that more Cr(VI) was reduced to Cr(III). The dominant strains in the substrates of different CWs were Sphingomonas sp., Cystobacter sp., Acidobacteria bacterium, Sporotrichum and Pellicularia species. The Cr(VI) reducing bacteria from Leersia hexandra Swartz rhizosphere was identified as Bacillus cereus. Furthermore, under suitable conditions, the removal rate of Cr(VI) by Bacillus cereus was close to 100%.


Asunto(s)
Bacillus cereus/metabolismo , Cromo/metabolismo , Microbiota , Contaminantes Químicos del Agua/metabolismo , Humedales , Biodegradación Ambiental , Oxidación-Reducción , Poaceae/microbiología , Rizosfera
18.
Sci Total Environ ; 665: 920-928, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790763

RESUMEN

Compost-derived dissolved organic matter (DOM), which has a wide distribution of molecular weight (MW) and polarity, has a potential application in the remediation of the contaminated soil due to its redox-active functional groups. Composting treatment can change the MW and polarity of the DOM through microbial transformation and degradation. However, the relationship between the redox properties of compost-derived DOM and its MW and polarity is still unclear. DOM was extracted from municipal solid wastes with different composting times in this study, and it was further fractionated into humic acids (HA), fulvic acids (FA) and hydrophilic (HyI) fractions based on its hydrophobicity and XAD-8 resin. Electron transfer capacities [including electron accepting capacities (EAC) and electron donating capacities (EDC)] of the HA, FA and HyI fractions and their associations with polarity and MW were studied. The results showed that the EAC of the HA, FA and HyI all increased after composting. The EDC of the HA and HyI exhibited an increasing trend as well, though that of the FA decreased remarkably after composting. The MW, polarity and redox-active functional groups of the HA, FA and HyI fractions were determined using high performance liquid chromatography and excitation-emission matrix fluorescence spectra coupled with parallel factor analysis. The result showed that the quinone-like groups were mainly detected in the medium MW and transphilic sub-fractions of the HA, FA and HyI, and were the main functional groups responsible for the EAC. The low MW sub-fractions, which consisted mainly of tyrosine-like matter, were the main functional components accounted for the EDC. The results advance our understanding of the influence of MW and polarity on the redox properties of organic substances, and facilitate to reveal the important redox-active functional groups when compost is utilized to remediate the contaminated soil.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31888127

RESUMEN

Atrazine is a kind of triazine herbicide that is widely used for weed control due to its good weeding effect and low price. The study of atrazine removal from the environment is of great significance due to the stable structure, difficult degradation, long residence time in environment, and toxicity on the organism and human beings. Therefore, a number of processing technologies are developed and widely employed for atrazine degradation, such as adsorption, photochemical catalysis, biodegradation, etc. In this article, with our previous research work, the progresses of researches about the treatment technology of atrazine are systematically reviewed, which includes the four main aspects of physicochemical, chemical, biological, and material-microbial-integrated aspects. The advantages and disadvantages of various methods are summarized and the degradation mechanisms are also evaluated. Specially, recent advanced technologies, both plant-microbial remediation and the material-microbial-integrated method, have been highlighted on atrazine degradation. Among them, the plant-microbial remediation is based on the combined system of soil-plant-microbes, and the material-microbial-integrated method is based on the synergistic effect of materials and microorganisms. Additionally, future research needs to focus on the excellent removal effect and low environmental impact of functional materials, and the coordination processing of two or more technologies for atrazine removal is also highlighted.


Asunto(s)
Atrazina/química , Biodegradación Ambiental , Herbicidas/química , Plantas/química , Microbiología del Suelo , Contaminantes del Suelo/química
20.
Environ Sci Pollut Res Int ; 25(2): 1883-1891, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103118

RESUMEN

This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Aguas del Alcantarillado/análisis , Residuos Sólidos/análisis , Eliminación de Residuos Líquidos/métodos , Humedales , China , Proyectos Piloto , Análisis de Componente Principal , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...