Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 350: 122742, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797365

RESUMEN

AIMS: Intramuscular fat (IMF) infiltration and extracellular matrix (ECM) deposition are characteristic features of muscle dysfunction, such as muscular dystrophy and severe muscle injuries. However, the underlying mechanisms of cellular origin, adipocyte formation and fibrosis in skeletal muscle are still unclear. MAIN METHODS: Pigs were injected with 50 % glycerol (GLY) to induce skeletal muscle injury and regeneration. The acyl chain composition was analyzed by lipidomics, and the cell atlas and molecular signatures were revealed via single-cell RNA sequencing (scRNA-seq). Adipogenesis analysis was performed on fibroblast/fibro-adipogenic progenitors (FAPs) isolated from pigs. KEY FINDINGS: The porcine GLY-injured skeletal muscle regeneration model was characterized by IMF infiltration and ECM deposition. Skeletal muscle stem cells (MuSCs) and FAP clusters were analyzed to explore the potential mechanisms of adipogenesis and fibrosis, and it was found that the TGF-ß signaling pathway might be a key switch that regulates differentiation. Consistently, activation of the TGF-ß signaling pathway increased SMAD2/3 phosphorylation and inhibited adipogenesis in FAPs, while inhibition of the TGF-ß signaling pathway increased the expression of PPARγ and promoted adipogenesis. SIGNIFICANCE: GLY-induced muscle injury and regeneration provides comprehensive insights for the development of therapies for human skeletal muscle dysfunction and fatty infiltration-related diseases in which the TGF-ß/SMAD signaling pathway might play a primary regulatory role.

3.
BMC Biol ; 21(1): 212, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807064

RESUMEN

BACKGROUND: Obesity, characterized by excessive white adipose tissue expansion, is associated with several metabolic complications. Identifying new adipogenesis regulators may lead to effective therapies for obesity-induced metabolic disorders. RESULTS: Here, we identified the growth arrest and DNA damage-inducible A (GADD45A), a stress-inducible histone-folding protein, as a novel regulator of subcutaneous adipose metabolism. We found that GADD45A expression was positively correlated with subcutaneous fat deposition and obesity in humans and fatty animals. In vitro, the gain or loss function of GADD45A promoted or inhibited subcutaneous adipogenic differentiation and lipid accumulation, respectively. Using a Gadd45a-/- mouse model, we showed that compared to wild-type (WT) mice, knockout (KO) mice exhibited subcutaneous fat browning and resistance to high-fat diet (HFD)-induced obesity. GADD45A deletion also upregulated the expression of mitochondria-related genes. Importantly, we further revealed that the interaction of GADD45A with Stat1 prevented phosphorylation of Stat1, resulting in the impaired expression of Lkb1, thereby regulating subcutaneous adipogenesis and lipid metabolism. CONCLUSIONS: Overall, our results reveal the critical regulatory roles of GADD45A in subcutaneous fat deposition and lipid metabolism. We demonstrate that GADD45A deficiency induces the inguinal white adipose tissue (iWAT) browning and protects mice against HFD-induced obesity. Our findings provide new potential targets for combating obesity-related metabolic diseases and improving human health.


Asunto(s)
Metabolismo de los Lípidos , Obesidad , Animales , Humanos , Ratones , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/farmacología , Grasa Subcutánea/metabolismo
4.
Nano Lett ; 23(18): 8392-8398, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37682637

RESUMEN

The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e., the formation of bipolarons, are primarily responsible for the pseudogap in (TaSe4)2I. After weak photoexcitation of the material, we observe the appearance of both dispersive (single-particle bare band) and flat bands (single-polaron sub-bands) in the gap by using time- and angle-resolved photoemission spectroscopy. Based on Monte Carlo simulations of the Holstein model, we propose that the melting of pseudogap and emergence of new bands originate from a bipolaron to single-polaron crossover. We also observe dramatically different relaxation times for the excited in-gap states in (TaSe4)2I (∼600 fs) compared with another 1D material Rb0.3MoO3 (∼60 fs), which provides a new method for distinguishing between pseudogaps induced by polaronic or Luttinger-liquid many-body interactions.

6.
NPJ Sci Food ; 7(1): 23, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268610

RESUMEN

Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and transcriptional programs underlying lipid deposition in highly marbled meat are still unclear. Here, we used Laiwu pigs with high (HLW) or low (LLW) IMF contents to explore the cellular and transcriptional mechanisms underlying lipid deposition in highly-marbled pork by single-nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing. The HLW group had higher IMF contents but less drip loss than the LLW group. Lipidomics results revelled the changes of overall lipid classes composition (e.g., glycerolipids including triglycerides, diglycerides, and monoglycerides; sphingolipids including ceramides and monohexose ceramide significantly increased) between HLW and LLW groups. SnRNA-seq revealed nine distinct cell clusters, and the HLW group had a higher percentage of adipocytes (1.40% vs. 0.17%) than the LLW group. We identified 3 subpopulations of adipocytes, including PDE4D+/PDE7B+ (in HLW and LLW), DGAT2+/SCD+ (mostly in HLW) and FABP5+/SIAH1+ cells (mostly in HLW). Moreover, we showed that fibro/adipogenic progenitors could differentiate into IMF cells and contribute to 43.35% of adipocytes in mice. In addition, RNA-seq revealed different genes involved in lipid metabolism and fatty acid elongation. Our study provides new insights into the cellular and molecular signatures of marbling formation; such knowledge may facilitate the development of new strategies to increase IMF deposition and the lipo-nutritional quality of high marbled pork.

7.
Medicina (Kaunas) ; 59(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37241127

RESUMEN

Background and Objectives: The aim was to explore the interventional effect of the traditional Chinese medicine (TCM) exercise of Tian Dan Shugan Tiaoxi on the emotions of patients with mild novel coronavirus (COVID-19). Materials and Methods: A total of 110 asymptomatic and mildly symptomatic COVID-19 patients from Hongkou Memorial Road Temporary Cabin Hospital and South Renji Hospital were selected between April 2022 and June 2022, and randomly divided into two groups: a control group and an intervention group. There were 55 participants in each group. The control group was treated with Lianhua Qingwen granules, and members of the intervention group were made to practice Tian Dan Shugan Tiaoxi (an exercise that soothes the liver and regulates emotions) every day for 5 days. The Patient Health Questionnaire-9 (PHQ-9), the Generalized Anxiety Disorder questionnaire (GAD-7), and the Symptom Checklist 90 (SCL-90) were used to evaluate the data collected before and after the trial. Results: The incidence of anxiety and depression was high in the patients included in this study, at 73.64% and 69.09%, respectively. After intervention, the scores of the Patient Health Questionnaire-9 (PHQ-9) and the Generalized Anxiety Disorder questionnaire (GAD-7) in the two groups had decreased in comparison with those recorded before intervention (p < 0.05). The PHQ-9 and GAD-7 scores in the intervention group were significantly better than those of the control group (p < 0.05). The factors of somatization, depression, anxiety, hostility, and fear in the SCL-90 in the intervention group were significantly improved after intervention, and generally, better than those in the control group (p < 0.05). Conclusions: Patients infected with novel coronavirus in shelter hospitals have different degrees of emotional abnormalities. Tian Dan Shugan Tiaoxi can reduce the anxiety and depression of people with mild novel coronavirus, and it can be practiced clinically to improve the recovery rate among infected people.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Emociones , Ansiedad/psicología , Trastornos de Ansiedad
8.
Meat Sci ; 201: 109177, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37023593

RESUMEN

This study aimed to determine the effects of fermented mixed feed (FMF) supplementation (0%, 5% and 10%) on the intestinal microbial community and metabolism, and the compositions of volatile flavor compounds and inosine monophosphate (IMP) contents in the longissimus thoracis. In this study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 groups with 4 replicate pens per group and 12 pigs per pen. The experiment lasted 38 days after 4 days of acclimation. The 16S rRNA gene sequences and an untargeted metabolomics analysis showed FMF altered the profiles of microbes and metabolites in the colon. Heracles flash GC e-nose analysis showed that 10% FMF (treatment 3) had a greater influence on the compositions of volatile flavor compounds than 5% FMF (treatment 2). Compared to 0% FMF (treatment 1), the contents of total aldehydes, (E,E)-2,4-nonadienal, dodecanal, nonanal and 2-decenal were significantly increased by treatment 3, and treatment 3 increased IMP concentrations and gene expressions related to its synthesis. Correlations analysis showed significantly different microbes and metabolites had strong correlations with the contents of IMP and volatile flavor compounds. In conclusion, treatment 3 regulated intestinal microbial community and metabolism, that in turn altered the compositions of volatile compounds, which contributed to improving pork flavor and umami.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Metabolómica , ARN Ribosómico 16S/genética , Porcinos
9.
BMC Biol ; 21(1): 27, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750818

RESUMEN

BACKGROUND: In addition to its contractile properties and role in movement, skeletal muscle plays an important function in regulating whole-body glucose and lipid metabolism. A central component of such regulation is mitochondria, whose quality and function are essential in maintaining proper metabolic homeostasis, with defects in processes such as autophagy and mitophagy involved in mitochondria quality control impairing skeletal muscle mass and function, and potentially leading to a number of associated diseases. Cold exposure has been reported to markedly induce metabolic remodeling and enhance insulin sensitivity in the whole body by regulating mitochondrial biogenesis. However, changes in lipid metabolism and lipidomic profiles in skeletal muscle in response to cold exposure are unclear. Here, we generated lipidomic or transcriptome profiles of mouse skeletal muscle following cold induction, to dissect the molecular mechanisms regulating lipid metabolism upon acute cold treatment. RESULTS: Our results indicated that short-term cold exposure (3 days) can lead to a significant increase in intramuscular fat deposition. Lipidomic analyses revealed that a cold challenge altered the overall lipid composition by increasing the content of triglyceride (TG), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE), while decreasing sphingomyelin (SM), validating lipid remodeling during the cold environment. In addition, RNA-seq and qPCR analysis showed that cold exposure promoted the expression of genes related to lipolysis and fatty acid biosynthesis. These marked changes in metabolic effects were associated with mitophagy and muscle signaling pathways, which were accompanied by increased TG deposition and impaired fatty acid oxidation. Mechanistically, HIF-1α signaling was highly activated in response to the cold challenge, which may contribute to intramuscular fat deposition and enhanced mitophagy in a cold environment. CONCLUSIONS: Overall, our data revealed the adaptive changes of skeletal muscle associated with lipidomic and transcriptomic profiles upon cold exposure. We described the significant alterations in the composition of specific lipid species and expression of genes involved in glucose and fatty acid metabolism. Cold-mediated mitophagy may play a critical role in modulating lipid metabolism in skeletal muscle, which is precisely regulated by HIF-1α signaling.


Asunto(s)
Metabolismo de los Lípidos , Mitofagia , Animales , Ratones , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lípidos , Músculo Esquelético/metabolismo , Frío
10.
Anim Nutr ; 12: 87-95, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632618

RESUMEN

This study was conducted to investigate the effects of fermented mixed feed (FMF) on growth performance, carcass traits, meat quality, muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs. In the present study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen. The dietary treatments included a basal diet (CON), a basal diet + 5% FMF and a basal diet + 10% FMF. The experiment lasted 38 d after 4 d of acclimation. The results showed that 5% and 10% FMF significantly increased the average daily gain (ADG) of the females but not the males (P < 0.05), but FMF supplementation showed no impact on carcass traits. Moreover, 10% FMF supplementation increased the meat color45 min and meat color24 h values, while it decreased the shear force relative to CON (P < 0.05). In addition, 10% FMF significantly increased the contents of flavor amino acids (FAA), total essential AA (EAA), total non-EAA (NEAA) and total AA relative to CON (P < 0.05). Furthermore, the diet supplemented with 10% FMF significantly increased the concentration of n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA and total PUFA, and the PUFA to saturated fatty acids ratio (P < 0.05), suggesting that FMF supplementation increased meat quality. Moreover, compared with the CON, 10% FMF supplementation increased the mRNA expression of lipogenic genes, including CEBPα, PPARγ, SREBP1 and FABP4, and upregulated the expression of unsaturated fatty acid synthesis (ACAA1 and FADS2). Together, our results suggest that 10% FMF dietary supplementation improved the female pigs' growth performance, improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs. This study provides a reference for the production of high-quality pork.

11.
J Cachexia Sarcopenia Muscle ; 14(1): 326-341, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511343

RESUMEN

BACKGROUND: Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS: To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 µL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS: The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2  = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2  = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2  = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS: Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.


Asunto(s)
Leptina , PPAR gamma , Anciano , Animales , Humanos , Ratones , Adenosina Trifosfato , Daño del ADN , Ratones Endogámicos mdx , Músculos/metabolismo , PPAR gamma/metabolismo
12.
Research (Wash D C) ; 6: 0268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434240

RESUMEN

Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and crucial for systemic metabolism. Under chronic cold exposures and high-fat diet challenges, BAT undergoes robust remodeling to adapt to physiological demands. However, whether and how BAT regenerates after acute injuries are poorly understood. Here, we established a novel BAT injury and regeneration model (BAT-IR) in mice and performed single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR. We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration. Cell trajectory and gene expression analyses uncovered the involvement of MAPK, Wnt, and Hedgehog (Hh) signaling pathways in BAT regeneration. We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout (cKO) of the Sufu gene to activate Hh signaling in BAT and muscle progenitors. Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.

13.
Sci Rep ; 12(1): 19734, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396677

RESUMEN

Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform-a super-resolution time-frequency analytical method-to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems.

14.
Food Funct ; 13(23): 12093-12104, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36377505

RESUMEN

Conjugated linoleic acid (CLA) is a potential nutritional strategy to regulate meat quality in pigs and produce high-quality pork. However, the effects of CLA on nutritional quality, lipid dynamics, microbiota, and their metabolites in the gut of pigs remain unclear. Our study explored the effects of CLA on lipo-nutritional quality based on a Heigai pig model and investigated the regulatory mechanism using an integrated analysis of multiple omics. A total of 58 Heigai finishing pigs (body weight: 85.58 ± 10.39 kg) were randomly divided into 2 treatments and fed diets containing 1% soyabean oil and 1% CLA for 40 days. 1% CLA significantly decreased the backfat thickness (P < 0.05) and increased the intramuscular fat (IMF) content (P < 0.05). The expression of lipid metabolism-related genes was significantly changed (P < 0.05) and lipidome analysis showed the alternations of lipid dynamics in the longissimus dorsi muscle (LDM). In addition, based on the microbiome and metabolomic analyses, the relative abundances of Parabacteroides, Bacteroides, and Lachnospiraceae_UCG-010 increased and CLA changed the metabolome profiles and the short-chain fatty acid (SCFA) composition in the gut, which were significantly increased (P < 0.05). Additionally, Pearson's correlation analysis indicated that differential microbial genera and SCFAs induced by CLA had tight correlations with the backfat thickness, IMF content and lipids in the LDM. CLA enhances the lipid accumulation and metabolism in muscle and these changes are associated with the production and functions of the differential bacteria and SCFAs in the gut of pigs.


Asunto(s)
Microbioma Gastrointestinal , Ácidos Linoleicos Conjugados , Carne de Cerdo , Carne Roja , Animales , Tejido Adiposo/metabolismo , Alimentación Animal , Composición Corporal , Ácidos Grasos/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Carne/análisis , Valor Nutritivo , Porcinos
15.
Ageing Res Rev ; 80: 101682, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35809776

RESUMEN

Sarcopenia and myopathies cause progressive muscle weakness and degeneration, which are closely associated with fat infiltration and fibrosis in muscle. Recently, experimental research has shed light on fibro-adipogenic progenitors (FAPs), also known as muscle-resident mesenchymal progenitors with multiple differentiation potential for adipogenesis, fibrosis, osteogenesis and chondrogenesis. They are considered key regulators of muscle homeostasis and integrity. They play supportive roles in muscle development and repair by orchestrating the regulatory interplay between muscle stem cells (MuSCs) and immune cells. Interestingly, FAPs also contribute to intramuscular fat infiltration, fibrosis and other pathologies when the functional integrity of the network is compromised. In this review, we summarize recent insights into the roles of FAPs in maintenance of skeletal muscle homeostasis, and discuss the underlying mechanisms regulating FAPs behavior and fate, highlighting their roles in participating in efficient muscle repair and fat infiltrated muscle degeneration as well as during muscle atrophy. We suggest that controlling and predicting FAPs differentiation may become a promising strategy to improve muscle function and prevent irreparable muscle damage.


Asunto(s)
Adipogénesis , Músculo Esquelético , Diferenciación Celular/fisiología , Fibrosis , Homeostasis , Humanos , Músculo Esquelético/patología , Atrofia Muscular/patología
16.
Struct Dyn ; 9(1): 014501, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35071692

RESUMEN

Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1T-TaSe2. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials by manipulating charge-lattice orders and couplings.

17.
J Cell Physiol ; 237(3): 1639-1647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34796916

RESUMEN

Adipocytes are the key constituents of adipose tissue, and their de-differentiation process has been widely observed in physiological and pathological conditions. For obese people, the promotion of adipocyte de-differentiation or maintenance of an undifferentiated state of adipocytes may help to improve their metabolic condition. Thus, understanding the regulatory mechanisms of adipocyte de-differentiation is necessary for treating metabolic diseases. Attractively, in addition to intracellular signals regulating adipocyte de-differentiation, external factors such as temperature and pressure also affect adipocyte de-differentiation. In this review, we summarize the recent progress in the field and discuss the regulatory roles and mechanisms of involved endogenous and exogenous factors during the process of de-differentiation.


Asunto(s)
Adipocitos , Enfermedades Metabólicas , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Diferenciación Celular , Humanos , Enfermedades Metabólicas/metabolismo , Obesidad/genética , Obesidad/metabolismo
18.
J Basic Microbiol ; 61(8): 686-696, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34101863

RESUMEN

Fusarium is an important plant pathogen and many cell wall-degrading enzymes (CWDEs) are produced in Fusarium-infected plant tissues. To investigate the role of CWDEs in the pathogenicity of pitaya pathogen, we isolated a Fusarium equiseti strain from the diseased pitaya fruit and the activities of CWDEs were determined. The higher polygalacturonase (PG) activity was confirmed both in vitro and vivo. Aiming at the PG gene, the CRISPR/Cas9 system of F. equiseti was constructed and optimized for the first time. Through the process of microhomology-mediated end joining, the flanking region containing 30 bp was used to mediate the homologous recombination of Cas9 double-strand breaks, and the PG gene knockout mutants were obtained by protoplast transformation. Through the phenotypic and pathogenicity experiments of the wild-type strain and mutant strain, the results showed that the colony growth rate and spore production of the strain without the PG gene decreased to some extent, and the lesion diameter and the degree of pericarp cell damage decreased, which showed that the CRISPR/Cas9 system could be used in F. equiseti and PG enzyme and can play a significant role in the interaction between F. equiseti and pitaya fruit.


Asunto(s)
Sistemas CRISPR-Cas , Fusarium/genética , Virulencia/genética , Antioxidantes , Cactaceae/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Frutas/microbiología , Edición Génica/métodos , Enfermedades de las Plantas/microbiología
19.
Front Cell Dev Biol ; 9: 808095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096834

RESUMEN

Uncoupling protein 1 (UCP1), the hallmark protein responsible for nonshivering thermogenesis in adipose tissue (especially brown adipose tissue) has regained researchers' attention in the context of metabolic disorders following the realization that UCP1 can be activated in adult humans and reconstituted in pigs. Both skeletal muscle and adipose tissue are highly dynamic tissues that interact at the metabolic and hormonal level in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. Here, we utilized lipidomics and transcriptomics to identify the altered lipid profiles and regulatory pathways in skeletal muscles from adipocyte-specific UCP1 knock-in (KI) pigs. UCP1 KI changed the contents of glycerophospholipids and acyl carnitines of skeletal muscles. Several metabolic regulatory pathways were more enriched in the UCP1 KI skeletal muscle. Comparison of the transcriptomes of adipose and skeletal muscle suggested that nervous system or chemokine signaling might account for the crosstalk between these two tissues in UCP1 KI pigs. Comparison of the lipid biomarkers from UCP1 KI pigs and other mammals suggested associations between UCP1 KI-induced metabolic alternations and metabolic and muscle dysfunction. Our study reveals the lipid dynamics and transcriptional programs in the skeletal muscle of UCP1 KI pigs and suggests that a network regulates metabolic homeostasis between skeletal muscle and adipose tissue.

20.
J Cell Physiol ; 236(4): 2393-2412, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32885426

RESUMEN

Myokines are muscle-derived cytokines and chemokines that act extensively on organs and exert beneficial metabolic functions in the whole-body through specific signal networks. Myokines as mediators provide the conceptual basis for a whole new paradigm useful for understanding how skeletal muscle communicates with other organs. In this review, we summarize and discuss classes of myokines and their physiological functions in mediating the regulatory roles of skeletal muscle on other organs and the regulation of the whole-body energy metabolism. We review the mechanisms involved in the interaction between skeletal muscle and nonmuscle organs through myokines. Moreover, we clarify the connection between exercise, myokines and disease development, which may contribute to the understanding of a potential mechanism by which physical inactivity affects the process of metabolic diseases via myokines. Based on the current findings, myokines are important factors that mediate the effect of skeletal muscle on other organ functions and whole-body metabolism.


Asunto(s)
Citocinas/metabolismo , Músculo Esquelético/metabolismo , Comunicación Paracrina , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...