Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37502711

RESUMEN

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

2.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37192000

RESUMEN

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Calbindinas/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Senescencia Celular/genética , Retrovirus Endógenos/genética , Neoplasias Pulmonares/genética , Provirus/genética
3.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36007063

RESUMEN

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales/metabolismo , Antivirales , COVID-19/genética , Humanos , Inmunidad Innata , Proteínas Asociadas a Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , ARN Mensajero/genética
4.
Nature ; 607(7920): 776-783, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859176

RESUMEN

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Asunto(s)
Adenosina Desaminasa , Interferón Tipo I , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Apoptosis , Caspasa 8/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Ratones , Mutación , Necroptosis , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525337

RESUMEN

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Adenosina Desaminasa/genética , Interferón Tipo I/inmunología , ARN Bicatenario/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inosina/genética , Inosina/metabolismo , Interferón Tipo I/genética , Ratones , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Edición de ARN/genética , ARN Bicatenario/metabolismo
6.
Nat Commun ; 12(1): 5590, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552077

RESUMEN

Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism.


Asunto(s)
Variaciones en el Número de Copia de ADN , Productos del Gen gag/química , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de la Apoptosis/química , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Cristalografía por Rayos X , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Oncogene ; 40(37): 5567-5578, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145398

RESUMEN

The ubiquitin-proteasome system maintains protein homoeostasis, underpins the cell cycle, and is dysregulated in cancer. However, the role of individual E3 ubiquitin ligases, which mediate the final step in ubiquitin-mediated proteolysis, remains incompletely understood. Identified through screening for cancer-specific endogenous retroviral transcripts, we show that the little-studied E3 ubiquitin ligase HECTD2 exerts dominant control of tumour progression in melanoma. HECTD2 cell autonomously drives the proliferation of human and murine melanoma cells by accelerating the cell cycle. HECTD2 additionally regulates cancer cell production of immune mediators, initiating multiple immune suppressive pathways, which include the cyclooxygenase 2 (COX2) pathway. Accordingly, higher HECTD2 expression is associated with weaker anti-tumour immunity and unfavourable outcome of PD-1 blockade in human melanoma and counteracts immunity against a model tumour antigen in murine melanoma. This central, multifaceted role of HECTD2 in cancer cell-autonomous proliferation and in immune evasion may provide a single target for a multipronged therapy of melanoma.


Asunto(s)
Evasión Inmune , Ubiquitina-Proteína Ligasas , Animales , División Celular , Proliferación Celular , Humanos , Lipogénesis , Melanoma , Ratones , Proteolisis
8.
Mol Biol Evol ; 38(6): 2468-2474, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33560369

RESUMEN

The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.


Asunto(s)
Retrovirus Endógenos/fisiología , Interacciones Huésped-Patógeno/genética , Virus de la Leucemia Murina/fisiología , Animales , Interacciones Huésped-Patógeno/inmunología , Ratones
9.
Nat Genet ; 52(12): 1294-1302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077915

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a regulator of several physiological processes. ACE2 has recently been proposed to be interferon (IFN) inducible, suggesting that SARS-CoV-2 may exploit this phenomenon to enhance viral spread and questioning the efficacy of IFN treatment in coronavirus disease 2019. Using a recent de novo transcript assembly that captured previously unannotated transcripts, we describe a new isoform of ACE2, generated by co-option of intronic retroelements as promoter and alternative exon. The new transcript, termed MIRb-ACE2, exhibits specific expression patterns across the aerodigestive and gastrointestinal tracts and is highly responsive to IFN stimulation. In contrast, canonical ACE2 expression is unresponsive to IFN stimulation. Moreover, the MIRb-ACE2 translation product is a truncated, unstable ACE2 form, lacking domains required for SARS-CoV-2 binding and is therefore unlikely to contribute to or enhance viral infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Interferones/metabolismo , Retroelementos/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Línea Celular , Chlorocebus aethiops , Inducción Enzimática , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Estabilidad Proteica , RNA-Seq , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Distribución Tisular , Células Vero
10.
PLoS Genet ; 16(6): e1008471, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525879

RESUMEN

Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Ratones/genética , Proteínas/genética , Infecciones por Retroviridae/genética , Animales , Resistencia a la Enfermedad/genética , Ratones/virología , Retroviridae/patogenicidad , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología
11.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453763

RESUMEN

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Asunto(s)
Anticuerpos Antivirales/inmunología , Canales de Calcio/inmunología , Membrana Celular/inmunología , Endocitosis/inmunología , Virus de la Leucemia Murina/inmunología , Canales Catiónicos TRPV/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos BALB C
12.
Nature ; 580(7803): 391-395, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296175

RESUMEN

The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.


Asunto(s)
Inflamación/metabolismo , Necroptosis , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caspasa 8/metabolismo , Femenino , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología
13.
Nature ; 580(7804): E10, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322058

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Adv ; 6(1): eaay6354, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911950

RESUMEN

The tetrapod neuronal protein ARC and its Drosophila melanogaster homolog, dARC1, have important but differing roles in neuronal development. Both are thought to originate through exaptation of ancient Ty3/Gypsy retrotransposon Gag, with their novel function relying on an original capacity for self-assembly and encapsidation of nucleic acids. Here, we present the crystal structure of dARC1 CA and examine the relationship between dARC1, mammalian ARC, and the CA protein of circulating retroviruses. We show that while the overall architecture is highly related to that of orthoretroviral and spumaretroviral CA, there are substantial deviations in both amino- and carboxyl-terminal domains, potentially affecting recruitment of partner proteins and particle assembly. The degree of sequence and structural divergence suggests that Ty3/Gypsy Gag has been exapted on two separate occasions and that, although mammalian ARC and dARC1 share functional similarity, the structures have undergone different adaptations after appropriation into the tetrapod and insect genomes.


Asunto(s)
Proteínas del Citoesqueleto/genética , Desarrollo Embrionario/genética , Evolución Molecular , Proteínas del Tejido Nervioso/genética , Retroelementos/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genoma de los Insectos/genética , Humanos , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Ratones , Neuronas/metabolismo , Retroviridae/genética
15.
Genome Med ; 11(1): 86, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870430

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS: Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS: Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS: Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Retroelementos/genética , Anciano , Empalme Alternativo , Azacitidina/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular , Proteínas Activadoras de GTPasa/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Manosiltransferasas/genética , Persona de Mediana Edad , Inducción de Remisión , Transcriptoma/efectos de los fármacos , Insuficiencia del Tratamiento , Proteínas Supresoras de Tumor/genética
16.
Elife ; 82019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729316

RESUMEN

Immune regulation is a finely balanced process of positive and negative signals. PD-L1 and its receptor PD-1 are critical regulators of autoimmune, antiviral and antitumoural T cell responses. Although the function of its predominant membrane-bound form is well established, the source and biological activity of soluble PD-L1 (sPD-L1) remain incompletely understood. Here, we show that sPD-L1 in human healthy tissues and tumours is produced by exaptation of an intronic LINE-2A (L2A) endogenous retroelement in the CD274 gene, encoding PD-L1, which causes omission of the transmembrane domain and the regulatory sequence in the canonical 3' untranslated region. The alternatively spliced CD274-L2A transcript forms the major source of sPD-L1 and is highly conserved in hominids, but lost in mice and a few related species. Importantly, CD274-L2A-encoded sPD-L1 lacks measurable T cell inhibitory activity. Instead, it functions as a receptor antagonist, blocking the inhibitory activity of PD-L1 bound on cellular or exosomal membranes.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Retroelementos/genética , Empalme Alternativo/genética , Animales , Antígeno B7-H1/química , Antígeno B7-H1/genética , Proliferación Celular , Secuencia Conservada/genética , Evolución Molecular , Exones/genética , Células HEK293 , Hominidae/genética , Humanos , Terapia de Inmunosupresión , Ratones Endogámicos C57BL , Dominios Proteicos , Solubilidad
17.
Genome Res ; 29(10): 1578-1590, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31537638

RESUMEN

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Asunto(s)
Neoplasias/genética , Retroelementos/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Filogenia , Retroelementos/inmunología , Secuencias Repetidas Terminales/genética , Transcriptoma/inmunología
18.
Blood ; 133(10): 1108-1118, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30700420

RESUMEN

Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular , Antígenos de Histocompatibilidad Clase II/inmunología , Animales , Presentación de Antígeno , Médula Ósea , Células de la Médula Ósea/citología , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Proteínas de Homeodominio/genética , Leucemia de Células B/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Proc Natl Acad Sci U S A ; 115(40): 10130-10135, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224488

RESUMEN

Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to ∼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.


Asunto(s)
Evolución Molecular , Proteínas/genética , Animales , Ratones , Murinae
20.
Cancer Immunol Res ; 6(11): 1292-1300, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30143537

RESUMEN

Mouse models have been instrumental in establishing fundamental principles of cancer initiation and progression and continue to be invaluable in the discovery and further development of cancer therapies. Nevertheless, important aspects of human disease are imperfectly approximated in mouse models, notably the involvement of endogenous retroviruses (ERVs). Replication-defective ERVs, present in both humans and mice, may affect tumor development and antitumor immunity through mechanisms not involving infection. Here, we revealed an adverse effect of murine ERVs with restored infectivity on the behavior of mouse cancer models. In contrast to human cancer, where infectious ERVs have never been detected, we found that ERV infectivity was frequently restored in transplantable, as well as genetic, mouse cancer models. Such replication-competent, ERV-derived retroviruses were responsible for unusually high expression of retroviral nucleic acids and proteins in mouse cancers. Infectious ERV-derived retroviruses produced by mouse cancer cells could directly infect tumor-infiltrating host immune cells and fundamentally modified the host's immune defenses to cancer, as well as the outcome of immunotherapy. Therefore, infectious retroviruses, variably arising in mouse cancer models, but not in human cancer, have the potential to confound many immunologic studies and should be considered as a variable, if not altogether avoided. Cancer Immunol Res; 6(11); 1292-300. ©2018 AACR.


Asunto(s)
Retrovirus Endógenos/patogenicidad , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/virología , Animales , Línea Celular Tumoral , Femenino , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/patogenicidad , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Neoplasias Experimentales/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas B-raf/genética , Infecciones por Retroviridae/virología , Tropismo Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...