Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Curr Oncol Rep ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822929

RESUMEN

PURPOSE OF REVIEW: Homologous recombination repair deficiency (HRD) increases breast cancer susceptibility and influences both prophylactic and active management of breast cancer. This review evaluates HRD testing and the therapeutic implications of HRD in a global context. RECENT FINDINGS: Ongoing research efforts have highlighted the importance of HRD beyond BRCA1/2 as a potential therapeutic target in breast cancer. However, despite the improved affordability of next-generation sequencing (NGS) and the discovery of PARP inhibitors, economic and geographical barriers in access to HRD testing and breast cancer screening do not allow all patients to benefit from the personalized treatment approach they provide. Advancements in HRD testing modalities and targeted therapeutics enable tailored breast cancer management. However, inequalities in access to testing and optimized treatments are contributing to widening health disparities globally.

2.
J Natl Cancer Inst ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852945

RESUMEN

BACKGROUND: Breast cancer brain metastasis is a rising occurrence, necessitating a better understanding of the mechanisms involved for effective management. Breast cancer brain metastases diverge notably from the primary tumor, with gains in kinase and concomitant losses of steroid signaling observed. In this study, we explored the role of the kinase receptor RET in promoting breast cancer brain metastases and provide a rationale for targeting this receptor. METHODS: RET expression was characterized in a cohort of patients with primary and brain metastatic tumors. RET functionality was assessed using pharmacological inhibition and gene silencing in patient-derived brain metastatic tumor explants and in vivo models, organoid models, and brain organotypic cultures. RNA sequencing was used to uncover novel brain metastatic relevant RET mechanisms of action. RESULTS: A statistically significant enrichment of RET in brain metastases was observed in estrogen receptor-positive breast cancer, where it played a role in promoting cancer cell adhesion, survival, and outgrowth in the brain. In vivo, RET overexpression enhanced brain metastatic competency in patient-derived models. At a mechanistic level, RET overexpression was found to enhance the activation of gene programs involved in cell adhesion, requiring EGFR cooperation to deliver a pro-brain metastatic phenotype. CONCLUSION: Our results illustrate, for the first time, the role of RET in regulating colonization and outgrowth of breast cancer brain metastasis and provide data to support the use of RET inhibitors in the management strategy for patients with breast cancer brain metastases.

3.
JNCI Cancer Spectr ; 8(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897655

RESUMEN

OBJECTIVE: Although the benefits of consumer involvement in research and health care initiatives are known, there is a need to optimize this for all people with cancer. This systematic review aimed to synthesize and evaluate the application of co-design in the oncology literature and develop recommendations to guide the application of optimal co-design processes and reporting in oncology research, practice, and policy. METHODS: A systematic review of co-design studies in adults with cancer was conducted, searching MEDLINE, CINAHL, Embase, and PsycINFO databases and included studies focused on 2 concepts, co-design and oncology. RESULTS: A total of 5652 titles and abstracts were screened, resulting in 66 eligible publications reporting on 51 unique studies. Four frameworks were applied to describe the co-design initiatives. Most co-design initiatives were designed for use in an outpatient setting (n = 38; 74%) and were predominantly digital resources (n = 14; 27%) or apps (n = 12; 23%). Most studies (n = 25; 49%) used a co-production approach to consumer engagement. Although some studies presented strong co-design methodology, most (n = 36; 70%) did not report the co-design approach, and 14% used no framework. Reporting was poor for the participant level of involvement, the frequency, and time commitment of co-design sessions. Consumer participation level was predominantly collaborate (n = 25; 49%). CONCLUSIONS: There are opportunities to improve the application of co-design in oncology research. This review has generated recommendations to guide 1) methodology and frameworks, 2) recruitment and engagement of co-design participants, and 3) evaluation of the co-design process. These recommendations can help drive appropriate, meaningful, and equitable co-design, leading to better cancer research and care.


Asunto(s)
Participación de la Comunidad , Neoplasias , Humanos , Neoplasias/terapia , Proyectos de Investigación , Oncología Médica , Participación del Paciente , Adulto
4.
Curr Oncol Rep ; 26(2): 103-113, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236558

RESUMEN

PURPOSE OF REVIEW: In the last decade, poly (ADP-ribose) polymerase (PARP) inhibitors have been approved in the treatment of several cancers, such as breast and ovarian cancer. This article aims to discuss the current uses, limitations, and future directions for PARP inhibitors (PARPis) in the treatment of breast cancer. RECENT FINDINGS: Following the results of the OlympiAD and EMBRACA trials, PARPis were approved in HER2-negative breast cancer with a germline BRCA mutation. We reviewed this class of drugs' mechanism of action, efficacy, and limitations, as well as further studies that discussed resistance, impaired homologous recombination repair (HRR), and the combination of PARPis with other drugs. Improving understanding of HRR, increasing the ability to target resistance, and combining PARPis with other novel agents are continuing to increase the clinical utility of PARPis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Poli(ADP-Ribosa) Polimerasas/genética , Reparación del ADN , Neoplasias Ováricas/tratamiento farmacológico
5.
EMBO Mol Med ; 15(12): e17737, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37902007

RESUMEN

Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
6.
J Telemed Telecare ; : 1357633X231188536, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37518937

RESUMEN

INTRODUCTION: Despite the significant expansion and rapid uptake of telehealth services as a COVID-19 response, the pandemic restricted opportunities to involve health consumers in telehealth research. Authentic consumer and community involvement in research begins with engagement in priority-setting. We report here on the process and outcomes of a consumer-led event intended to support involvement of consumers, from early in the research process. METHODS: In 2022, The University of Queensland's Consumer and Community Network hosted a Consumer Roundtable to 'bring researchers to the consumer table' and explore emerging issues and priorities for future research. The event used World Café Method, with three 20-min rounds of small group discussion centred on questions about telehealth experiences, followed by a facilitated harvest discussion about future research directions. Participants' notes from small group discussions were subjected to conventional inductive content analysis, and a visual record was created in real-time by a graphic artist. RESULTS: Twenty-eight consumers and 22 researchers took part. Content analysis identified three main foci from discussions: person-centred care, better access to better care, the (unrealised) potential of telehealth. Research questions prioritised by consumer vote focussed on marginalised groups and stigmatised conditions; differences between telehealth and face-to-face healthcare delivery; and the experience of conveying and receiving compassion via telehealth. DISCUSSION: The Consumer Roundtable created early engagement between health consumer representatives and telehealth researchers, which has yielded ongoing partnerships. World Café method proved particularly useful for seeding relationships between researchers and consumers. However, there was limited opportunity to generate consensus about research priorities.

7.
J Cancer Policy ; 36: 100414, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36841473

RESUMEN

Upon the COVID-19 pandemic onset in Ireland, cancer service disruptions occurred due to prioritisation of COVID-19 related care, redeployment of staff, initial pausing of screening, diagnostic, medical and surgical oncology procedures, staff shortages due to COVID-19 infection and impacts on the physical and mental health of cancer healthcare workers. This was coupled with reluctance among people with symptoms suspicious for cancer to attend for clinical evaluation, due to concerns of contracting the virus. This was further compounded by a cyber-attack on national health service IT systems on May 14th 2021. The Irish Cancer Society, a national cancer charity with a role in advocacy, research and patient supports, convened a multi-disciplinary stakeholder group (COVID-19 and Cancer Working Group) to reflect on and understand the impact of the pandemic on cancer patients and services in Ireland, and discuss potential mitigation strategies. Perspectives on experiences were gathered across domains including timeliness of data acquisition and its conversion into intelligence, and the resourcing of cancer care to address cancer service impacts. The group highlighted aspects for future research to understand the long-term pandemic impact on cancer outcomes, while also highlighting potential strategies to support cancer services, build resilience and address delayed diagnosis. Additional measures include the need for cancer workforce recruitment and retention, increased mental health supports for both patients and oncology professionals, improvements to public health messaging, a near real-time multimodal national cancer database, and robust digital and physical infrastructure to mitigate impacts of the current pandemic and future challenges to cancer care systems.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Pandemias , COVID-19/epidemiología , Irlanda/epidemiología , Medicina Estatal , Neoplasias/epidemiología
10.
Cancer Gene Ther ; 30(2): 368-374, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36352093

RESUMEN

Targeted therapeutic options and prognostic biomarkers for hormone receptor- or Her2 receptor-negative breast cancers are severely limited. The sigma-1 receptor, a stress-activated chaperone, is frequently dysregulated in disease. However, its significance in breast cancer (BCa) has not been adequately explored. Here, we report that the sigma-1 receptor gene (SIGMAR1) is elevated in BCa, particularly in the aggressive triple-negative (TNBC) subtype. By examining several patient datasets, we found that high expression at both the gene (SIGMAR1) and protein (Sig1R) levels associated with poor survival outcomes, specifically in ER-Her2- groups. Our data further show that high SIGMAR1 was predictive of shorter survival times in patients treated with adjuvant chemotherapy (ChT). Interestingly, in a separate cohort who received neoadjuvant taxane + anthracycline treatment, elevated SIGMAR1 associated with higher rates of pathologic complete response (pCR). Treatment with a Sig1R antagonist, 1-(4-iodophenyl)-3-(2-adamantyl)guanidine (IPAG), activated the unfolded protein response (UPR) in TNBC (high-Sig1R expressing) and ER + (low-Sig1R expressing) BCa cell lines. In tamoxifen-resistant LY2 cells, IPAG caused Sig1R to aggregate and co-localise with the stress marker BiP. These findings showcase the potential of Sig1R as a novel biomarker in TNBC as well as highlight its ligand-induced interference with the stress-coping mechanisms of BCa cells.


Asunto(s)
Neoplasias de la Mama , Receptores sigma , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ligandos , Receptores sigma/genética , Receptores sigma/uso terapéutico , Estrés del Retículo Endoplásmico , Receptor Sigma-1
11.
Nat Med ; 28(4): 752-765, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411077

RESUMEN

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundario , Irradiación Craneana , Humanos , Melanoma/radioterapia
12.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35174975

RESUMEN

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Ratones , Recurrencia Local de Neoplasia , Proteómica
13.
Nat Commun ; 13(1): 514, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082299

RESUMEN

The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Metástasis de la Neoplasia , Adulto , Mama , Femenino , Redes Reguladoras de Genes , Genes p53/genética , Humanos , Persona de Mediana Edad , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transcriptoma
14.
Clin Cancer Res ; 27(14): 3980-3989, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34016642

RESUMEN

PURPOSE: There is strong epidemiologic evidence indicating that estrogens may not be the sole steroid drivers of breast cancer. We hypothesize that abundant adrenal androgenic steroid precursors, acting via the androgen receptor (AR), promote an endocrine-resistant breast cancer phenotype. EXPERIMENTAL DESIGN: AR was evaluated in a primary breast cancer tissue microarray (n = 844). Androstenedione (4AD) levels were evaluated in serum samples (n = 42) from hormone receptor-positive, postmenopausal breast cancer. Levels of androgens, progesterone, and estradiol were quantified using LC/MS-MS in serum from age- and grade-matched recurrent and nonrecurrent patients (n = 6) before and after aromatase inhibitor (AI) therapy (>12 months). AR and estrogen receptor (ER) signaling pathway activities were analyzed in two independent AI-treated cohorts. RESULTS: AR protein expression was associated with favorable progression-free survival in the total population (Wilcoxon, P < 0.001). Pretherapy serum samples from breast cancer patients showed decreasing levels of 4AD with age only in the nonrecurrent group (P < 0.05). LC/MS-MS analysis of an AI-sensitive and AI-resistant cohort demonstrated the ability to detect altered levels of steroids in serum of patients before and after AI therapy. Transcriptional analysis showed an increased ratio of AR:ER signaling pathway activities in patients failing AI therapy (t test P < 0.05); furthermore, 4AD mediated gene changes associated with acquired AI resistance. CONCLUSIONS: This study highlights the importance of examining the therapeutic consequences of the steroid microenvironment and demonstrable receptor activation using indicative gene expression signatures.


Asunto(s)
Androstenodiona/fisiología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/etiología , Receptores Androgénicos/fisiología , Androstenodiona/sangre , Neoplasias de la Mama/sangre , Resistencia a Antineoplásicos , Femenino , Humanos , Ligandos , Transducción de Señal , Células Tumorales Cultivadas
15.
Oncogene ; 40(7): 1318-1331, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420368

RESUMEN

Steroid regulated cancer cells use nuclear receptors and associated regulatory proteins to orchestrate transcriptional networks to drive disease progression. In primary breast cancer, the coactivator AIB1 promotes estrogen receptor (ER) transcriptional activity to enhance cell proliferation. The function of the coactivator in ER+ metastasis however is not established. Here we describe AIB1 as a survival factor, regulator of pro-metastatic transcriptional pathways and a promising actionable target. Genomic alterations and functional expression of AIB1 associated with reduced disease-free survival in patients and enhanced metastatic capacity in novel CDX and PDX ex-vivo models of ER+ metastatic disease. Comparative analysis of the AIB1 interactome with complementary RNAseq characterized AIB1 as a transcriptional repressor. Specifically, we report that AIB1 interacts with MTA2 to form a repressive complex, inhibiting CDH1 (encoding E-cadherin) to promote EMT and drive progression. We further report that pharmacological and genetic inhibition of AIB1 demonstrates significant anti-proliferative activity in patient-derived models establishing AIB1 as a viable strategy to target endocrine resistant metastasis. This work defines a novel role for AIB1 in the regulation of EMT through transcriptional repression in advanced cancer cells with a considerable implication for prognosis and therapeutic interventions.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cadherinas/genética , Histona Desacetilasas/genética , Coactivador 3 de Receptor Nuclear/genética , Proteínas Represoras/genética , Antígenos CD/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/genética , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Coactivador 3 de Receptor Nuclear/antagonistas & inhibidores , Fenotipo , Pronóstico , Tamoxifeno/farmacología
16.
Oncogene ; 40(6): 1077-1090, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323971

RESUMEN

The mutagenic APOBEC3B (A3B) cytosine deaminase is frequently over-expressed in cancer and promotes tumour heterogeneity and therapy resistance. Hence, understanding the mechanisms that underlie A3B over-expression is important, especially for developing therapeutic approaches to reducing A3B levels, and consequently limiting cancer mutagenesis. We previously demonstrated that A3B is repressed by p53 and p53 mutation increases A3B expression. Here, we investigate A3B expression upon treatment with chemotherapeutic drugs that activate p53, including 5-fluorouracil, etoposide and cisplatin. Contrary to expectation, these drugs induced A3B expression and concomitant cellular cytosine deaminase activity. A3B induction was p53-independent, as chemotherapy drugs stimulated A3B expression in p53 mutant cells. These drugs commonly activate ATM, ATR and DNA-PKcs. Using specific inhibitors and gene knockdowns, we show that activation of DNA-PKcs and ATM by chemotherapeutic drugs promotes NF-κB activity, with consequent recruitment of NF-κB to the A3B gene promoter to drive A3B expression. Further, we find that A3B knockdown re-sensitises resistant cells to cisplatin, and A3B knockout enhances sensitivity to chemotherapy drugs. Our data highlight a role for A3B in resistance to chemotherapy and indicate that stimulation of A3B expression by activation of DNA repair and NF-κB pathways could promote cancer mutations and expedite chemoresistance.


Asunto(s)
Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética , Neoplasias/genética , Factor de Transcripción ReIA/genética , Proteína p53 Supresora de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Sistemas CRISPR-Cas/genética , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Etopósido/farmacología , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Heterogeneidad Genética , Células HCT116 , Humanos , Células MCF-7 , Mutación/genética , FN-kappa B/genética , Neoplasias/patología
17.
BMC Med ; 18(1): 349, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208158

RESUMEN

BACKGROUND: Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood-brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. METHODS: Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target's natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. RESULTS: Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. CONCLUSION: ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.


Asunto(s)
Proteínas ADAM/metabolismo , Materiales Biomiméticos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Proteínas ADAM/biosíntesis , Proteínas ADAM/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética
18.
Menopause ; 28(2): 142-149, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33235033

RESUMEN

OBJECTIVE: This randomized controlled trial tested a digitally-delivered whole-of-lifestyle program for women previously treated for cancer. We investigated (1) associations between self-reported physical activity (PA) and menopausal symptoms and (2) if the intervention was associated with beneficial changes in PA and menopausal symptoms. METHODS: Women were randomized to intervention (n = 142) or control (n = 138). The intervention targeted lifestyle behavior including PA. Self-reported PA (International Physical Activity Questionnaire - Short Form) and menopausal symptom (Green Climacteric Scale, GCS) data were collected at baseline, with measures repeated at 12 weeks (end of intervention) and 24 weeks (to assess sustainability). Generalized estimating equation models explored associations between PA and GCS scores. Mixed-effects generalized equation models analyzed changes within and between groups in PA and GCS scores. RESULTS: Total GCS scores were 1.83 (95% CI: 0.11-3.55) and 2.72 (95% CI: 1.12-4.33) points lower in women with medium and high levels of PA, respectively, than in women with low levels of PA. Total average GCS scores were 1.02 (0.21-2.26) and 1.61 (0.34-2.87) points lower in those undertaking moderate or vigorous intensity PA, respectively. Time spent walking, and performing moderate and vigorous PA were not different between intervention and control. The average GCS decrease of 0.66 points (95% CI: 0.03-1.29; p time = 0.03) over 24 weeks was not different between groups. CONCLUSION: This exploratory study established a stepwise association between moderate and vigorous PA and a lower total menopausal symptom score. The intervention did not appear to increase self-reported PA in women treated for early stage breast, reproductive, and blood cancers.


Asunto(s)
Ejercicio Físico , Neoplasias , Femenino , Humanos , Estilo de Vida , Menopausia , Autoinforme
19.
Cancer Res ; 80(20): 4314-4323, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32641416

RESUMEN

Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias Experimentales/patología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Humanos , Ratones , Ratas , Tropismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Protoc ; 15(8): 2503-2518, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32591768

RESUMEN

Fixed-tissue ChIP-seq for H3K27 acetylation (H3K27ac) profiling (FiTAc-seq) is an epigenetic method for profiling active enhancers and promoters in formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a modified ChIP-seq protocol (FiT-seq) for chromatin profiling in FFPE. FiT-seq produces high-quality chromatin profiles particularly for methylated histone marks but is not optimized for H3K27ac profiling. FiTAc-seq is a modified protocol that replaces the proteinase K digestion applied in FiT-seq with extended heating at 65 °C in a higher concentration of detergent and a minimized sonication step, to produce robust genome-wide H3K27ac maps from clinical samples. FiTAc-seq generates high-quality enhancer landscapes and super-enhancer (SE) annotation in numerous archived FFPE samples from distinct tumor types. This approach will be of great interest for both basic and clinical researchers. The entire protocol from FFPE blocks to sequence-ready library can be accomplished within 4 d.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Adhesión en Parafina , Fijación del Tejido , Acetilación , Animales , Hígado/citología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...