Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MAGMA ; 35(5): 817-826, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35416627

RESUMEN

OBJECTIVE: Oxygen-loaded nanobubbles have shown potential for reducing tumour hypoxia and improving treatment outcomes, however, it remains difficult to noninvasively measure the changes in partial pressure of oxygen (PO2) in vivo. The linear relationship between PO2 and longitudinal relaxation rate (R1) has been used to noninvasively infer PO2 in vitreous and cerebrospinal fluid, and therefore, this experiment aimed to investigate whether R1 is a suitable measurement to study oxygen delivery from such oxygen carriers. METHODS: T1 mapping was used to measure R1 in phantoms containing nanobubbles with varied PO2 to measure the relaxivity of oxygen (r1Ox) in the phantoms at 7 and 3 T. These measurements were used to estimate the limit of detection (LOD) in two experimental settings: preclinical 7 T and clinical 3 T MRI. RESULTS: The r1Ox in the nanobubble solution was 0.00057 and 0.000235 s-1/mmHg, corresponding to a LOD of 111 and 103 mmHg with 95% confidence at 7 and 3 T, respectively. CONCLUSION: This suggests that T1 mapping could provide a noninvasive method of measuring a > 100 mmHg oxygen delivery from therapeutic nanobubbles.


Asunto(s)
Imagen por Resonancia Magnética , Oxígeno , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
2.
J Mater Chem B ; 10(2): 302-305, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34914815

RESUMEN

Contrast agents retaining high relaxivities at ultrahigh magnetic fields underpin an enhanced image sensitivity within derived MRI scans. By varying the Dy3+ loading density inside a mesoporous silica architecture the dominant Curie effect can be effectively tuned so as to optimise T2 contrast at magnetic fields as high as 11.7 T.


Asunto(s)
Medios de Contraste/química , Radiofármacos/química , Dióxido de Silicio/química , Disprosio/química , Campos Magnéticos , Porosidad , Temperatura
3.
Magn Reson Med ; 86(6): 3246-3258, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272767

RESUMEN

PURPOSE: A shortage of suitable donor livers is driving increased use of higher risk livers for transplantation. However, current biomarkers are not sensitive and specific enough to predict posttransplant liver function. This is limiting the expansion of the donor pool. Therefore, better noninvasive tests are required to determine which livers will function following implantation and hence can be safely transplanted. This study assesses the temperature sensitivity of proton density fat fraction and relaxometry parameters and examines their potential for assessment of liver function ex vivo. METHODS: Six ex vivo human livers were scanned during static cold storage following normothermic machine perfusion. Proton density fat fraction, T1 , T2 , and T2∗ were measured repeatedly during cooling on ice. Temperature corrections were derived from these measurements for the parameters that showed significant variation with temperature. RESULTS: Strong linear temperature sensitivities were observed for proton density fat fraction (R2 = 0.61, P < .001) and T1 (R2 = 0.78, P < .001). Temperature correction according to a linear model reduced the coefficient of repeatability in these measurements by 41% and 36%, respectively. No temperature dependence was observed in T2 or T2∗ measurements. Comparing livers deemed functional and nonfunctional during normothermic machine perfusion by hemodynamic and biochemical criteria, T1 differed significantly: 516 ± 50 ms for functional versus 679 ± 60 ms for nonfunctional, P = .02. CONCLUSION: Temperature correction is essential for robust measurement of proton density fat fraction and T1 in cold-stored human livers. These parameters may provide a noninvasive measure of viability for transplantation.


Asunto(s)
Hígado Graso , Trasplante de Hígado , Hígado Graso/diagnóstico por imagen , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Perfusión
4.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068301

RESUMEN

Maintaining organ viability between donation and transplantation is of critical importance for optimal graft function and survival. To date in pancreas transplantation, static cold storage (SCS) is the most widely practiced method of organ preservation. The first experiments in ex vivo perfusion of the pancreas were performed at the beginning of the 20th century. These perfusions led to organ oedema, hemorrhage, and venous congestion after revascularization. Despite these early hurdles, a number of factors now favor the use of perfusion during preservation: the encouraging results of HMP in kidney transplantation, the development of new perfusion solutions, and the development of organ perfusion machines for the lung, heart, kidneys and liver. This has led to a resurgence of research in machine perfusion for whole organ pancreas preservation. This review highlights the ischemia-reperfusion injuries assessment during ex vivo pancreas perfusion, both for assessment in pre-clinical experimental models as well for future use in the clinic. We evaluated perfusion dynamics, oedema assessment, especially by impedance analysis and MRI, whole organ oxygen consumption, tissue oxygen tension, metabolite concentrations in tissue and perfusate, mitochondrial respiration, cell death, especially by histology, total cell free DNA, caspase activation, and exocrine and endocrine assessment.


Asunto(s)
Preservación de Órganos/métodos , Trasplante de Páncreas , Páncreas/fisiología , Daño por Reperfusión/prevención & control , Supervivencia Tisular , Animales , Humanos
6.
PLoS One ; 12(10): e0187153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073228

RESUMEN

PURPOSE: Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. MATERIALS AND METHODS: A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. RESULTS: The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. CONCLUSION: This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Humanos , Imagen por Resonancia Magnética/métodos , Isótopos de Fósforo , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...