Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Rev Biophys ; 52: 573-595, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37159298

RESUMEN

Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.


Asunto(s)
Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón
2.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516362

RESUMEN

The autophagy-initiating human ULK complex consists of the kinase ULK1/2, FIP200, ATG13, and ATG101. Hydrogen-deuterium exchange mass spectrometry was used to map their mutual interactions. The N-terminal 640 residues (NTD) of FIP200 interact with the C-terminal IDR of ATG13. Mutations in these regions abolish their interaction. Negative stain EM and multiangle light scattering showed that FIP200 is a dimer, while a single molecule each of the other subunits is present. The FIP200NTD is flexible in the absence of ATG13, but in its presence adopts the shape of the letter C ∼20 nm across. The ULK1 EAT domain interacts loosely with the NTD dimer, while the ATG13:ATG101 HORMA dimer does not contact the NTD. Cryo-EM of the NTD dimer revealed a structural similarity to the scaffold domain of TBK1, suggesting an evolutionary similarity between the autophagy-initiating TBK1 kinase and the ULK1 kinase complex.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Proteínas Relacionadas con la Autofagia/química , Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Serina-Treonina Quinasas/química , Proteínas de Transporte Vesicular/química , Secuencia de Aminoácidos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Medición de Intercambio de Deuterio , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Science ; 366(6468): 971-977, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31672913

RESUMEN

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Asunto(s)
Lisosomas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisosomas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 116(43): 21508-21513, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591221

RESUMEN

Autophagy induction by starvation and stress involves the enzymatic activation of the class III phosphatidylinositol (PI) 3-kinase complex I (PI3KC3-C1). The inactive basal state of PI3KC3-C1 is maintained by inhibitory contacts between the VPS15 protein kinase and VPS34 lipid kinase domains that restrict the conformation of the VPS34 activation loop. Here, the proautophagic MIT domain-containing protein NRBF2 was used to map the structural changes leading to activation. Cryoelectron microscopy was used to visualize a 2-step PI3KC3-C1 activation pathway driven by NRFB2 MIT domain binding. Binding of a single NRBF2 MIT domain bends the helical solenoid of the VPS15 scaffold, displaces the protein kinase domain of VPS15, and releases the VPS34 kinase domain from the inhibited conformation. Binding of a second MIT stabilizes the VPS34 lipid kinase domain in an active conformation that has an unrestricted activation loop and is poised for access to membranes.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/química , Regulación Alostérica , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Microscopía por Crioelectrón , Activación Enzimática , Humanos , Modelos Moleculares , Dominios Proteicos , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo
5.
Autophagy ; 15(6): 1122-1123, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30894086

RESUMEN

Macroautophagy/autophagy is an evolutionarily conserved degradation system with fundamental biological functions. The activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complexes and the subsequent production of phosphatidylinositol 3-phosphate (PtdIns3P) are pivotal to autophagy. Using a combination of structural biology, biochemistry, and biophysics, we revealed how the non-catalytic subunit BECN1 serves as a membrane-binding switch in the regulation of PtdIns3K complexes and autophagy.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III
6.
Mol Cell ; 73(2): 339-353.e6, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581147

RESUMEN

Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first ß sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA ß sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 ß sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1/química , Beclina-1/genética , Sitios de Unión , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Microscopía por Crioelectrón , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Annu Rev Biochem ; 86: 225-244, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301741

RESUMEN

Autophagy is the process of cellular self-eating by a double-membrane organelle, the autophagosome. A range of signaling processes converge on two protein complexes to initiate autophagy: the ULK1 (unc51-like autophagy activating kinase 1) protein kinase complex and the PI3KC3-C1 (class III phosphatidylinositol 3-kinase complex I) lipid kinase complex. Some 90% of the mass of these large protein complexes consists of noncatalytic domains and subunits, and the ULK1 complex has essential noncatalytic activities. Structural studies of these complexes have shed increasing light on the regulation of their catalytic and noncatalytic activities in autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the integral membrane protein Atg9 (autophagy-related 9), COPII (coat protein complex II) vesicles, and possibly other sources. In the wake of reconstitution and super-resolution imaging studies, we are beginning to understand how the ULK1 and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII vesicles at the start of autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Fagosomas/ultraestructura , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Unión Proteica , Multimerización de Proteína , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 113(29): 8224-9, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385829

RESUMEN

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is central to autophagy initiation. We previously reported the V-shaped architecture of the four-subunit version of PI3KC3-C1 consisting of VPS (vacuolar protein sorting) 34, VPS15, BECN1 (Beclin 1), and ATG (autophagy-related) 14. Here we show that a putative fifth subunit, nuclear receptor binding factor 2 (NRBF2), is a tightly bound component of the complex that profoundly affects its activity and architecture. NRBF2 enhances the lipid kinase activity of the catalytic subunit, VPS34, by roughly 10-fold. We used hydrogen-deuterium exchange coupled to mass spectrometry and negative-stain electron microscopy to map NRBF2 to the base of the V-shaped complex. NRBF2 interacts primarily with the N termini of ATG14 and BECN1. We show that NRBF2 is a homodimer and drives the dimerization of the larger PI3KC3-C1 complex, with implications for the higher-order organization of the preautophagosomal structure.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Relacionadas con la Autofagia/genética , Beclina-1/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Escherichia coli/genética , Células HEK293 , Humanos , Transactivadores/genética
9.
Elife ; 32014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25490155

RESUMEN

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) that functions in early autophagy consists of the lipid kinase VPS34, the scaffolding protein VPS15, the tumor suppressor BECN1, and the autophagy-specific subunit ATG14. The structure of the ATG14-containing PI3KC3-C1 was determined by single-particle EM, revealing a V-shaped architecture. All of the ordered domains of VPS34, VPS15, and BECN1 were mapped by MBP tagging. The dynamics of the complex were defined using hydrogen-deuterium exchange, revealing a novel 20-residue ordered region C-terminal to the VPS34 C2 domain. VPS15 organizes the complex and serves as a bridge between VPS34 and the ATG14:BECN1 subcomplex. Dynamic transitions occur in which the lipid kinase domain is ejected from the complex and VPS15 pivots at the base of the V. The N-terminus of BECN1, the target for signaling inputs, resides near the pivot point. These observations provide a framework for understanding the allosteric regulation of lipid kinase activity.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Secuencia de Aminoácidos , Animales , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/ultraestructura , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Nature ; 505(7483): 432-5, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24336205

RESUMEN

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA ΦX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the ΦX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Å resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Å-long α-helical barrel. The tube is constructed of ten α-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.


Asunto(s)
Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , ADN Viral/metabolismo , Escherichia coli/virología , Ensamble de Virus , Bacteriófago phi X 174/ultraestructura , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoplasma/metabolismo , Citoplasma/ultraestructura , Citoplasma/virología , ADN Viral/ultraestructura , Escherichia coli/citología , Escherichia coli/ultraestructura , Genoma Viral , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestructura , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
11.
J Virol ; 88(3): 1787-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284315

RESUMEN

The øX174 DNA pilot protein H forms an oligomeric DNA-translocating tube during penetration. However, monomers are incorporated into 12 pentameric assembly intermediates, which become the capsid's icosahedral vertices. The protein's N terminus, a predicted transmembrane helix, is not represented in the crystal structure. To investigate its functions, a series of absolute and conditional lethal mutations were generated. The absolute lethal proteins, a deletion and a triple substitution, were efficiently incorporated into virus-like particles lacking infectivity. The conditional lethal mutants, bearing cold-sensitive (cs) and temperature-sensitive (ts) point mutations, were more amenable to further analyses. Viable particles containing the mutant protein can be generated at the permissive temperature and subsequently analyzed at the restrictive temperature. The characterized cs defect directly affected host cell attachment. In contrast, ts defects were manifested during morphogenesis. Particles synthesized at permissive temperature were indistinguishable from wild-type particles in their ability to recognize host cells and deliver DNA. One mutation conferred an atypical ts synthesis phenotype. Although the mutant protein was efficiently incorporated into virus-like particles at elevated temperature, the progeny appeared to be kinetically trapped in a temperature-independent, uninfectious state. Thus, substitutions in the N terminus can lead to H protein misincorporation, albeit at wild-type levels, and subsequently affect particle function. All mutants exhibited recessive phenotypes, i.e., rescued by the presence of the wild-type H protein. Thus, mixed H protein oligomers are functional during DNA delivery. Recessive and dominant phenotypes may temporally approximate H protein functions, occurring before or after oligomerization has gone to completion.


Asunto(s)
Bacteriófago phi X 174/fisiología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Escherichia coli/virología , Mutación Missense , Ensamble de Virus , Acoplamiento Viral , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Proteínas de la Cápside/metabolismo , Datos de Secuencia Molecular
12.
Virology ; 411(1): 9-14, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21227478

RESUMEN

Defective øX174 H protein-mediated DNA piloting indirectly influences the entire viral lifecycle. Faulty piloting can mask the H protein's other functions or inefficient penetration may be used to explain defects in post-piloting phenomena. For example, optimal synthesis of other viral proteins requires de novo H protein biosynthesis. As low protein concentrations affect morphogenesis, protein H's assembly functions remain obscure. An H protein mutant was isolated that allowed morphogenetic effects to be characterized independent of its other functions. The mutant protein aggregates assembly intermediates. Although excess internal scaffolding protein restores capsid assembly, the resulting mutant H protein-containing particles are less infectious. In addition, nonviable phenotypes of am(H) mutants in Su+ hosts, which insert non-wild-type amino acids, do not always correlate with a lack of missense protein function. Phenotypes are highly influenced by host and phage physiology. This phenomenon was unique to am(H) mutants, not observed with amber mutants in other genes.


Asunto(s)
Bacteriófago phi X 174/fisiología , Bacteriófago phi X 174/ultraestructura , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA