Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Physiol ; 14: 1119368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875017

RESUMEN

Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.

3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430826

RESUMEN

Many studies have been conducted to elucidate the role of Type VI collagen in muscle and tendon, however, its role in oral tissues remains unclear. In this study, an α2(VI) deficient mouse (Col6α2-KO) model was used to examine the role of Type VI collagen in oral tissues. Tissue volume and mineral density were measured in oral tissues by µCT. Proteome analysis was performed using protein extracted from alveolar bone. In addition, alveolar bone was evaluated with a periodontitis induced model. µCT analysis showed the Col6α2-KO mice had less volume of alveolar bone, dentin and dental pulp, while the width of periodontal ligament (PDL) was greater than WT. The mineral density in alveolar bone and dentin were elevated in Col6α2-KO mice compared with WT. Our proteome analysis showed significant changes in proteins related to ECM organization and elevation of proteins associated with biomineralization in the Col6α2-KO mice. In induced periodontitis, Col6α2-KO mice had greater alveolar bone loss compared with WT. In conclusion, Type VI collagen has a role in controlling biomineralization in alveolar bone and that changes in the ECM of alveolar bone could be associated with greater bone loss due to periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , Colágeno Tipo VI/genética , Proteoma , Ratones Noqueados , Pérdida de Hueso Alveolar/metabolismo
4.
JBMR Plus ; 6(5): e10617, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509631

RESUMEN

For many years there has been a keen interest in developing regenerative treatment for temporomandibular joint-osteoarthritis (TMJ-OA). Currently, there is no consensus treatment due to the limited self-healing ability of articular cartilage and lack of understanding of the complex mechanisms regulating cartilage development in the TMJ. Endochondral ossification, the process of subchondral bone formation through chondrocyte differentiation, is critical for TMJ growth and development, and is tightly regulated by the composition of the extracellular matrix (ECM). Type VI collagen is a highly expressed ECM component in the TMJ cartilage, yet its specific functions are largely unknown. In this study, we investigated α2(VI)-deficient (Col6a2-knockout [KO]) mice, which are unable to secret or incorporate type VI collagen into their ECM. Compared with wild-type (WT) mice, the TMJ condyles of Col6a2-KO mice exhibit decreased bone volume/tissue volume (BV/TV) and a larger bone marrow space, suggesting the α2(VI)-deficient condyles have a failure in endochondral ossification. Differentiating chondrocytes are the main source of bone cells during endochondral ossification. Our study shows there is an increased number of chondrocytes in the proliferative zone and decreased Col10-expressing chondrocytes in Col6a2-KO cartilage, all pointing to abnormal chondrocyte differentiation and maturation. In addition, RNA sequencing (RNAseq) analysis identified distinct gene expression profiles related to cell cycle and ECM organization that were altered in the mutant condyles. These data also suggest that bone morphogenetic protein 2 (BMP2) activity was deregulated during chondrocyte differentiation. Immunohistochemical analysis indicated an upregulation of Col2 and Acan expression in Col6a2-KO cartilage. Moreover, the expression of pSmad1/5/8 and Runx2 was decreased in the Col6a2-KO cartilage compared with WT controls. Taken together, our data indicate that type VI collagen expressed in the TMJ cartilage is important for endochondral ossification, possibly by modulating the ECM and altering/disrupting signaling pathways important for TMJ chondrocyte differentiation. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
Matrix Biol Plus ; 13: 100099, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35036900

RESUMEN

Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.

6.
Breast Cancer Res ; 23(1): 51, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33966638

RESUMEN

BACKGROUND: Biglycan is a proteoglycan found in the extracellular matrix. We have previously shown that biglycan is secreted from tumor endothelial cells and induces tumor angiogenesis and metastasis. However, the function of stroma biglycan in breast cancer is still unclear. METHODS: Biglycan gene analysis and its prognostic values in human breast cancers were based on TCGA data. E0771 breast cancer cells were injected into WT and Bgn KO mice, respectively. RESULTS: Breast cancer patients with high biglycan expression had worse distant metastasis-free survival. Furthermore, biglycan expression was higher in the tumor stromal compartment compared to the epithelial compartment. Knockout of biglycan in the stroma (Bgn KO) in E0771 tumor-bearing mice inhibited metastasis to the lung. Bgn KO also impaired tumor angiogenesis and normalized tumor vasculature by repressing tumor necrosis factor-ɑ/angiopoietin 2 signaling. Moreover, fibrosis was suppressed and CD8+ T cell infiltration was increased in tumor-bearing Bgn KO mice. Furthermore, chemotherapy drug delivery and efficacy were improved in vivo in Bgn KO mice. CONCLUSION: Our results suggest that targeting stromal biglycan may yield a potent and superior anticancer effect in breast cancer.


Asunto(s)
Biglicano/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Células del Estroma/metabolismo , Microambiente Tumoral/fisiología , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Biglicano/genética , Biglicano/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Femenino , Fibrosis/prevención & control , Humanos , Ratones , Ratones Noqueados , Metástasis de la Neoplasia/prevención & control , Neovascularización Patológica/genética , Neovascularización Patológica/prevención & control , Paclitaxel/uso terapéutico , Pronóstico , Transducción de Señal , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo
7.
Nat Commun ; 11(1): 5982, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239617

RESUMEN

Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


Asunto(s)
Envejecimiento/fisiología , Proteínas CCN de Señalización Intercelular/metabolismo , Células Secretoras de Insulina/fisiología , Trasplante de Islotes Pancreáticos/métodos , Proteínas Proto-Oncogénicas/metabolismo , Envejecimiento/sangre , Animales , Proteínas CCN de Señalización Intercelular/sangre , Proteínas CCN de Señalización Intercelular/genética , Proliferación Celular , Células Cultivadas , Medios de Cultivo/metabolismo , Diabetes Mellitus/terapia , Femenino , Humanos , Células Secretoras de Insulina/trasplante , Masculino , Ratones , Ratones Noqueados , Cultivo Primario de Células/métodos , Proteínas Proto-Oncogénicas/sangre , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Destete
8.
J Struct Biol ; 212(3): 107627, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950603

RESUMEN

Biglycan (Bgn) and Fibromodulin (Fmod) are small leucine rich proteoglycans (SLRPs) which are abundant in the extra-cellular matrix (ECM) of mineralized tissues. We have previously generated a Bgn/Fmod double knock-out (DKO) mouse model and found it has a 3-fold increase in osteoclastogenesis compared with Wild type (WT) controls, resulting in a markedly low bone mass (LBM) phenotype. To try and rescue/repair the LBM phenotype of Bgn/Fmod DKO mice by suppressing osteoclast formation and activity, 3- and 26-week-old Bgn/Fmod DKO mice and age/gender matched WT controls were treated with OPG-Fc for 6 weeks after which bone parameters were evaluated using DEXA, micro-computed tomography (µCT) and serum biomarkers analyses. In the appendicular skeleton, OPG-Fc treatment improved some morphometric and geometric parameters in both the trabecular and cortical compartments in Bgn/Fmod DKO female and male mice, especially in the repair module. For many of the skeletal parameters analyzed, the Bgn/Fmod DKO mice were more responsive to the treatment than their WT controls. In addition, we found that OPG-Fc treatment was not able to prevent or ameliorate the formation of ectopic ossification, which are common lesions seen in aged joints and are one of the phenotypical hallmarks of our Bgn/Fmod DKO model. Analysis of skull bones, specifically the occipital bone, showed the treatment recovered some parameters of LBM phenotype in the craniofacial skeleton, more so in the younger rescue module. Using OPG-Fc as treatment alleviated, yet did not completely restore, the severe osteopenia and mineralized tissue structural abnormalities that Bgn/Fmod DKO mice suffer from.


Asunto(s)
Biglicano/deficiencia , Huesos/efectos de los fármacos , Fibromodulina/deficiencia , Fragmentos Fc de Inmunoglobulinas/farmacología , Osteoprotegerina/farmacología , Proteínas Recombinantes de Fusión/farmacología , Esqueleto/efectos de los fármacos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Huesos/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Fenotipo , Esqueleto/metabolismo
9.
Sci Rep ; 10(1): 13749, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792616

RESUMEN

Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.


Asunto(s)
Hueso Esponjoso/crecimiento & desarrollo , Hueso Esponjoso/patología , Colágeno Tipo VI/genética , Osteogénesis/genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Densidad Ósea/genética , Resorción Ósea/genética , Resorción Ósea/patología , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/citología , Osteogénesis/fisiología , Células RAW 264.7 , Transducción de Señal , Células del Estroma/metabolismo , Factor de Transcripción ReIA/metabolismo , Microtomografía por Rayos X
10.
J Histochem Cytochem ; 68(11): 747-762, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32623936

RESUMEN

Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).


Asunto(s)
Biglicano/metabolismo , Músculo Esquelético/metabolismo , Animales , Humanos , Músculo Esquelético/citología
11.
Matrix Biol ; 68-69: 533-546, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29330021

RESUMEN

Understanding the mechanisms that control cutaneous wound healing is crucial to successfully manage repair of damaged skin. The goal of the current study was to uncover novel extracellular matrix (ECM) components that control the wound healing process. Full thickness skin defects were created in mice and used to show CCN4 up-regulation during wound-healing as early as 1 day after surgery, suggesting a role in inflammation and subsequent dermal migration and proliferation. To determine how CCN4 could regulate wound healing we used Ccn4-KO mice and showed they had delayed wound closure accompanied by reduced expression of Col1a1 and Fn mRNA. Boyden chamber assays using Ccn4-deficient dermal fibroblasts showed they have reduced migration and proliferation compared to WT counterparts. To confirm CCN4 has a role in proliferation and migration of dermal cells, siRNA knockdown and transduction of CCN4 adenoviral transduction were used and resulted in reduced or enhanced migration of human adult dermal fibroblast (hADF) cells respectively. The induced migration of the dermal fibroblasts by CCN4 appears to work via α5ß1 integrin receptors that further stimulates down-stream ERK/JNK signaling. The regulation of CCN4 by TNF-α prompted us look further at their potential relationship. Treatment of hADFs with CCN4 and TNF-α alone or together showed CCN4 counteracted the inhibition of TNF-α on COL1A1 and FN mRNA expression and the stimulation of TNF-α on MMP-1 and MMP3 mRNA expression. CCN4 appeared to counterbalance the effects of TNF-α by inhibiting downstream NF-κB/p-65 signaling. Taken together we show CCN4 stimulates dermal fibroblast cell migration, proliferation and inhibits TNF-α stimulation, all of which could regulate wound healing.


Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Dermis/citología , Integrina alfa5beta1/metabolismo , Proteínas Proto-Oncogénicas/genética , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas , Animales , Proteínas CCN de Señalización Intercelular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Dermis/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Proto-Oncogénicas/metabolismo
12.
Methods Cell Biol ; 143: 281-296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310783

RESUMEN

Small leucine-rich proteoglycans (SLRPs) are a unique class of proteins that exist in the extracellular matrix, playing key roles in cell proliferation and function. In bone, SLRPs such as biglycan and decorin affect osteogenesis and bone remodeling. Their essential role in this organ system has created the need to isolate these proteins for study. Bone presents unique obstacles to the study of proteins; however, through the use of demineralizing agents, efficient methods of the purification of proteoglycans have been developed. Additionally, methods have been developed that allow for the production and isolation of proteoglycans from conditioned media, which opens the door to a wide array of in vitro and in vivo assays. In stride with the purification and utilization of proteoglycans is the need to insure proteoglycan identity and purity, which is accomplished through enzymatic deglycosylation and blot analysis.


Asunto(s)
Huesos/química , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/química , Proteoglicanos Pequeños Ricos en Leucina/aislamiento & purificación , Animales , Huesos/citología , Huesos/fisiología , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular , Condroitinasas y Condroitín Liasas/química , Medios de Cultivo Condicionados/química , Matriz Extracelular/fisiología , Glicosilación , Humanos , Células Madre Mesenquimatosas , Proteoglicanos Pequeños Ricos en Leucina/análisis , Proteoglicanos Pequeños Ricos en Leucina/fisiología
13.
J Biol Chem ; 293(1): 254-270, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29101233

RESUMEN

Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.


Asunto(s)
Productos del Gen env/metabolismo , Osteogénesis/fisiología , Fosfatidilserinas/fisiología , Proteínas Gestacionales/metabolismo , Animales , Anexinas/metabolismo , Resorción Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular , Fusión Celular/métodos , Línea Celular , Membrana Celular/metabolismo , Productos del Gen env/fisiología , Hematopoyesis , Humanos , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Osteoclastos/fisiología , Fosfatidilserinas/metabolismo , Proteínas Gestacionales/fisiología , Proteína de Unión al Calcio S100A4/metabolismo
14.
Sci Rep ; 7(1): 12627, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974711

RESUMEN

Biglycan (Bgn) and Fibromodulin (Fmod) are subtypes of the small leucine-rich family of proteoglycans (SLRP). In this study we examined the skeletal phenotype of BgnFmod double knockout (BgnFmod KO) mice and found they were smaller in size and have markedly reduced bone mass compared to WT. The low bone mass (LBM) phenotype is the result of both the osteoblasts and osteoclasts from BgnFmod KO mice having higher differentiation potential and being more active compared to WT mice. Using multiple approaches, we showed that both Bgn and Fmod directly bind TNFα as well as RANKL in a dose dependent manner and that despite expressing higher levels of both TNFα and RANKL, BgnFmod KO derived osteoblasts cannot retain these cytokines in the vicinity of the cells, which leads to elevated TNFα and RANKL signaling and enhanced osteoclastogenesis. Furthermore, adding either Bgn or Fmod to osteoclast precursor cultures significantly attenuated the cells ability to form TRAP positive, multinucleated giant cells. In summary, our data indicates that Bgn and Fmod expressed by the bone forming cells, are novel coupling ECM components that control bone mass through sequestration of TNFα and/or RANKL, thereby adjusting their bioavailability in order to regulate osteoclastogenesis.


Asunto(s)
Biglicano/genética , Fibromodulina/genética , Osteogénesis/genética , Ligando RANK/genética , Proteoglicanos Pequeños Ricos en Leucina/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Densidad Ósea/genética , Huesos/metabolismo , Diferenciación Celular/genética , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
15.
Cells Tissues Organs ; 204(2): 84-92, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28419987

RESUMEN

Temporomandibular joint (TMJ) osteoarthritis (OA) is a complex disease that affects both cartilage and subchondral bone. It is accompanied by loss of extracellular matrix (ECM) and may be controlled by bone morphogenetic protein-2 (BMP-2). We analyzed the effect of BMP-2 in both cartilage and subchondral bone in a TMJ-OA animal model that is deficient in biglycan (Bgn) and fibromodulin (Fmod) (Bgn-/-Fmod-/-). Whole mandibles were dissected from 3-week-old wild-type (WT) and Bgn-/-Fmod-/- mice and incubated with and without 250 µg/mL BMP-2 for 2 days using an explant culture system. Condyle growth was measured by microCT and the expression levels of cartilage and bone-related genes were analyzed using RT-PCR or by immunohistochemistry from condyles that contained an intact cartilage/subchondral bone interface. Osteoclast activity was estimated by tartrate-resistant acid phosphatase (TRAP) staining and by TRAP, Rankl, and Adamts4 mRNA expression levels. Our results showed that most parameters examined were slightly up-regulated in WT samples treated with BMP-2, and this up-regulation was significantly enhanced in the Bgn-/-Fmod-/- mice. The up-regulation of both catabolic and anabolic agents did not appear to positively affect the overall growth of Bgn-/-Fmod-/- condyles compared to WT controls. In summary, the up-regulation of both anabolic and catabolic genes in the WT and Bgn-/-Fmod-/- TMJs treated with BMP-2 suggests that BMP increases matrix turnover in the condyle, and, further, that Bgn and Fmod could have protective roles in regulating this process.


Asunto(s)
Biglicano/metabolismo , Proteína Morfogenética Ósea 2/genética , Matriz Extracelular/metabolismo , Osteoartritis/genética , Articulación Temporomandibular/patología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibromodulina , Humanos , Ratones , Ratones Noqueados , Osteoartritis/metabolismo
16.
EBioMedicine ; 7: 157-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27322469

RESUMEN

Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.


Asunto(s)
Trastornos del Conocimiento/genética , Fructosa/administración & dosificación , Redes Reguladoras de Genes , Enfermedades Metabólicas/genética , Nutrigenómica/métodos , Animales , Biglicano/genética , Biglicano/metabolismo , Epigenómica/métodos , Fibromodulina/genética , Fibromodulina/metabolismo , Perfilación de la Expresión Génica/métodos , Hipocampo/química , Humanos , Hipotálamo/química , Masculino , Redes y Vías Metabólicas , Modelos Animales , Medicina de Precisión , Ratas , Biología de Sistemas/métodos
17.
Matrix Biol ; 52-54: 1-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27131884

RESUMEN

The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities.


Asunto(s)
Huesos/fisiología , Matriz Extracelular/fisiología , Diente/fisiología , Animales , Calcificación Fisiológica , Humanos , Modelos Animales , Ingeniería de Tejidos , Calcificación de Dientes
18.
Matrix Biol ; 52-54: 141-150, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27072616

RESUMEN

The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.


Asunto(s)
Biglicano/metabolismo , Regulación hacia Abajo , Endostatinas/metabolismo , Curación de Fractura , Neovascularización Fisiológica , Animales , Biglicano/genética , Angiografía por Tomografía Computarizada , Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnicas de Inactivación de Genes , Ratones , Microtomografía por Rayos X
19.
Bone ; 83: 162-170, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26555637

RESUMEN

The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-ß3 (TGF-ß3). Overexpression of CCN4 enhanced TGF-ß3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-ß3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-ß3 and regulated the ability of TGF-ß3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-ß3.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Condrogénesis , Proteínas Proto-Oncogénicas/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas CCN de Señalización Intercelular/genética , Cartílago Articular/patología , Diferenciación Celular , Células Cultivadas , Condrogénesis/genética , Regulación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/citología , Ratones Noqueados , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración , Transducción de Señal/genética , Proteínas Smad/metabolismo , Cicatrización de Heridas
20.
J Bone Miner Res ; 30(10): 1887-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25892096

RESUMEN

Mechanical stimulation is crucial to bone growth and triggers osteogenic differentiation through a process involving Rho and protein kinase A. We previously cloned a gene (AKAP13, aka BRX) encoding a protein kinase A-anchoring protein in the N-terminus, a guanine nucleotide-exchange factor for RhoA in the mid-section, coupled to a carboxyl region that binds to estrogen and glucocorticoid nuclear receptors. Because of the critical role of Rho, estrogen, and glucocorticoids in bone remodeling, we examined the multifunctional role of Akap13. Akap13 was expressed in bone, and mice haploinsufficient for Akap13 (Akap13(+/-)) displayed reduced bone mineral density, reduced bone volume/total volume, and trabecular number, and increased trabecular spacing; resembling the changes observed in osteoporotic bone. Consistent with the osteoporotic phenotype, Colony forming unit-fibroblast numbers were diminished in Akap13(+/-) mice, as were osteoblast numbers and extracellular matrix production when compared to control littermates. Transcripts of Runx2, an essential transcription factor for the osteogenic lineage, and alkaline phosphatase (Alp), an indicator of osteogenic commitment, were both reduced in femora of Akap13(+/-) mice. Knockdown of Akap13 reduced levels of Runx2 and Alp transcripts in immortalized bone marrow stem cells. These findings suggest that Akap13 haploinsufficient mice have a deficiency in early osteogenesis with a corresponding reduction in osteoblast number, but no impairment of mature osteoblast activity.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/deficiencia , Densidad Ósea , Factores de Intercambio de Guanina Nucleótido/deficiencia , Osteoporosis , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Haploinsuficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...