Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(4): 1246-1258, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483353

RESUMEN

Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas , Señales de Clasificación de Proteína/genética , Clonación Molecular
2.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502272

RESUMEN

The actin cytoskeleton plays a central role in platelet formation and function. Alpha-actinins (actinins) are actin filament crosslinking proteins that are prominently expressed in platelets and have been studied in relation to their role in platelet activation since the 1970s. However, within the past decade, several groups have described mutations in ACTN1/actinin-1 that cause congenital macrothrombocytopenia (CMTP)-accounting for approximately 5% of all cases of this condition. These findings are suggestive of potentially novel functions for actinins in platelet formation from megakaryocytes in the bone marrow and/or platelet maturation in circulation. Here, we review some recent insights into the well-known functions of actinins in platelet activation before considering possible roles for actinins in platelet formation that could explain their association with CMTP. We describe what is known about the consequences of CMTP-linked mutations on actinin-1 function at a molecular and cellular level and speculate how these changes might lead to the alterations in platelet count and morphology observed in CMTP patients. Finally, we outline some unanswered questions in this area and how they might be addressed in future studies.


Asunto(s)
Actinina/metabolismo , Plaquetas/fisiología , Trombocitopenia/etiología , Actinina/genética , Humanos , Integrinas , Megacariocitos/patología , Megacariocitos/fisiología , Mutación , Adhesividad Plaquetaria , Trombocitopenia/sangre
4.
Br J Haematol ; 192(2): 322-332, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32478420

RESUMEN

Thrombotic events are common in patients with multiple myeloma (MM), smouldering myeloma (SM) and monoclonal gammopathy of undetermined significance (MGUS). Previous studies have indicated platelet hyperactivation as a feature of thrombotic risk in MM, but there is a dearth of data in MGUS. In the present study, multiparameter analysis of platelet activation and responsiveness was investigated by flow cytometry in patients with MGUS, SM/MM and healthy controls (HCs). The median platelet surface CD63 levels, annexin V and PAC-1 antibody (specific for activated integrin αIIbß3) binding were significantly elevated in patients with MGUS versus the HCs. These markers were also elevated in SM/MM, but not significantly. In all, 74% of MGUS and 38% of SM/MM patients had one or more elevated marker of platelet activation, compared to 19% of the HCs. Marker-specific hyporesponsiveness of platelets to agonist [adenosine diphosphate (ADP), thrombin receptor-activating peptide 6] stimulation in vitro was observed, with significantly reduced surface levels of P-selectin in response to ADP in patients with MGUS. Platelet-leucocyte aggregates were not altered in patients, while platelet-associated immunoglobulins were elevated in a subset of patients. Overall, we found that platelet hyperactivation is prevalent in both MGUS and SM/MM patients and is potentially related to hyporesponsiveness. These observations suggest that further investigation of the predictive and prognostic value of platelet hyperactivation in such patients is warranted.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada/complicaciones , Mieloma Múltiple/complicaciones , Activación Plaquetaria , Trombosis/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Plaquetas/patología , Femenino , Fibrinógeno/análisis , Humanos , Masculino , Persona de Mediana Edad , Gammopatía Monoclonal de Relevancia Indeterminada/sangre , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/sangre , Mieloma Múltiple/patología , Trombosis/sangre , Trombosis/patología
5.
Colloids Surf B Biointerfaces ; 190: 110967, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32199264

RESUMEN

Patterned films are essential to the commonplace technologies of modern life. However, they come at high cost to the planet, being produced from non-renewable, petrochemical-derived polymers and utilising substrates that require harsh, top-down etching techniques. Biopolymers offer a cheap, sustainable and viable alternative easily integrated into existing production techniques. We describe a simple method for the production of patterned biopolymer surfaces and the assignment of each biopolymer domain, which allows for selective metal incorporation used in many patterning applications. Protein and polysaccharide domains were identified by selective etching and metal incorporation; a first for biopolymer blends. Morphologies akin to those observed with synthetic polymer blends and block-copolymers were realised across a large range of feature diameter (200 nm to - 20 µm) and types (salami structure, continuous, porous and droplet-matrix). The morphologies of the films were tuneable with simple recipe changes, highlighting that these biopolymer blends are a feasible alternative to traditional polymers when patterning surfaces. The protein to polysaccharide ratio, viscosity, casting method and spin speed were found to influence the final film morphology. High protein concentrations generally resulted in porous structures whereas higher polysaccharide concentrations resulted in spherical discontinuous domains. Low spin speed conditions resulted in growth of protuberances ranging from 200 nm to 22 µm in diameter, while higher spin speeds resulted in more monodisperse features, with smaller maximal diameter structures ranging from 300 nm to 12.5 µm.


Asunto(s)
Nanopartículas/química , Polisacáridos/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Tamaño de la Partícula , Propiedades de Superficie
6.
J Colloid Interface Sci ; 532: 171-181, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30077829

RESUMEN

Greater sustainability in mass manufacturing is essential to alleviating anthropogenic climate change. High surface-area, micro- and nano-patterned films have become a fundamental tool in materials science, however these technologies are subject to a dwindling petrochemical supply, increasing costs and disposability concerns. This paper describes the production of patterned biopolymer films utilizing controlled phase separation of biopolymeric thin films into nanopatterns using easily transferable variables and methods. Similar morphologies to those commonly observed with synthetic block-copolymers (BCPs) were achieved across a large range of feature sizes, from 160 nm to >5 µm: Bicontinuous, porous, droplet-matrix, particulated and dimpled. Protein and polysaccharide type, protein to polysaccharide ratio, casting method and ambient humidity were primary conditions found to influence the pore morphology of the films. High protein concentrations (4:1 and 2:1 blends) generally resulted in porous structures whereas high polysaccharide concentrations (1:2 and 1:4 blends) resulted in spherical structures. High humidity conditions (60% + relative humidity) resulted in the growth of large protuberances up to 10 µm in diameter while lower humidity (10-30%) resulted in discrete features smaller than 200 nm.


Asunto(s)
Quitosano/química , Membranas Artificiales , Nanoestructuras/química , Albúmina Sérica Bovina/química , Gelatina/química , Humedad , Transición de Fase , Porosidad , Microextracción en Fase Sólida , Propiedades de Superficie
7.
Neuronal Signal ; 2(2): NS20170191, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32714586

RESUMEN

Ligand of NUMB Protein X1 and X2 (LNX1 and LNX2) are E3 ubiquitin ligases, named for their ability to interact with and promote the degradation of the cell fate determinant protein NUMB. On this basis they are thought to play a role in modulating NUMB/NOTCH signalling during processes such as cortical neurogenesis. However, LNX1/2 proteins can bind, via their four PDZ (PSD95, DLGA, ZO-1) domains, to an extraordinarily large number of other proteins besides NUMB. Many of these interactions suggest additional roles for LNX1/2 proteins in the nervous system in areas such as synapse formation, neurotransmission and regulating neuroglial function. Twenty years on from their initial discovery, I discuss here the putative neuronal functions of LNX1/2 proteins in light of the anxiety-related phenotype of double knockout mice lacking LNX1 and LNX2 in the central nervous system (CNS). I also review what is known about non-neuronal roles of LNX1/2 proteins, including their roles in embryonic patterning and pancreas development in zebrafish and their possible involvement in colorectal cancer (CRC), osteoclast differentiation and immune function in mammals. The emerging picture places LNX1/2 proteins as potential regulators of multiple cellular signalling processes, but in many cases the physiological significance of such roles remains only partly validated and needs to be considered in the context of the tight control of LNX1/2 protein levels in vivo.

8.
PLoS One ; 12(11): e0187352, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29121065

RESUMEN

Ligand of Numb protein X1 (LNX1) is an E3 ubiquitin ligase that contains a catalytic RING (Really Interesting New Gene) domain and four PDZ (PSD-95, DlgA, ZO-1) domains. LNX1 can ubiquitinate Numb, as well as a number of other ligands. However, the physiological relevance of these interactions in vivo remain unclear. To gain functional insights into the LNX family, we have characterised the LNX1 interactome using affinity purification and mass spectrometry. This approach identified a large number of novel LNX1-interacting proteins, as well as confirming known interactions with NUMB and ERC2. Many of the novel interactions mapped to the LNX PDZ domains, particularly PDZ2, and many showed specificity for LNX1 over the closely related LNX2. We show that PPFIA1 (liprin-α1), KLHL11, KIF7 and ERC2 are substrates for ubiquitination by LNX1. LNX1 ubiquitination of liprin-α1 is dependent on a PDZ binding motif containing a carboxyl terminal cysteine that binds LNX1 PDZ2. Surprisingly, the neuronally-expressed LNX1p70 isoform, that lacks the RING domain, was found to promote ubiquitination of PPFIA1 and KLHL11, albeit to a lesser extent than the longer RING-containing LNX1p80 isoform. Of several E3-ligases identified in the LNX1 interactome we confirm interactions of LNX1 with MID2/TRIM1 and TRIM27. On this basis we propose a model whereby LNX1p70, despite lacking a catalytic RING domain, may function as a scaffold to promote ubiquitination of its ligands through recruitment of other E3-ligases. These findings provide functional insights into the LNX protein family, particularly the neuronal LNX1p70 isoform.


Asunto(s)
Proteómica/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cromatografía de Afinidad , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ligandos , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Dominios RING Finger , Reproducibilidad de los Resultados , Especificidad por Sustrato , Ubiquitinación
9.
Mol Neurobiol ; 54(10): 8090-8109, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27889896

RESUMEN

NUMB is a key regulator of neurogenesis and neuronal differentiation that can be ubiquitinated and targeted for proteasomal degradation by ligand of numb protein-X (LNX) family E3 ubiquitin ligases. However, our understanding of LNX protein function in vivo is very limited. To examine the role of LNX proteins in regulating NUMB function in vivo, we generated mice lacking both LNX1 and LNX2 expression in the brain. Surprisingly, these mice are healthy, exhibit unaltered levels of NUMB protein and do not display any neuroanatomical defects indicative of aberrant NUMB function. Behavioural analysis of LNX1/LNX2 double knockout mice revealed decreased anxiety-related behaviour, as assessed in the open field and elevated plus maze paradigms. By contrast, no major defects in learning, motor or sensory function were observed. Given the apparent absence of major NUMB dysfunction in LNX null animals, we performed a proteomic analysis to identify neuronal LNX-interacting proteins other than NUMB that might contribute to the anxiolytic phenotype observed. We identified and/or confirmed interactions of LNX1 and LNX2 with proteins known to have presynaptic and neuronal signalling functions, including the presynaptic active zone constituents ERC1, ERC2 and LIPRIN-αs (PPFIA1, PPFIA3), as well as the F-BAR domain proteins FCHSD2 (nervous wreck homologue) and SRGAP2. These and other novel LNX-interacting proteins identified are promising candidates to mediate LNX functions in the central nervous system, including their role in modulating anxiety-related behaviour.


Asunto(s)
Ansiedad/metabolismo , Proteínas Portadoras/genética , Ligandos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Proteómica , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
10.
FEBS Lett ; 590(6): 685-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26879394

RESUMEN

Mutations in the actin cross-linking protein actinin-1 were recently linked to dominantly inherited congenital macrothrombocytopenia. Here, we report that several disease-associated mutations that are located within the actinin-1 actin-binding domain cause increased binding of actinin-1 to actin filaments and enhance filament bundling in vitro. These actinin-1 mutants are also more stably associated with the cytoskeleton in cultured cells, as assessed by biochemical fractionation and fluorescence recovery after photobleaching experiments. For two mutations the disruption of contacts between the calponin homology domains within the actinin actin-binding domain may explain increased filament binding--providing mechanistic and structural insights into the basis of actinin-1 dysfunction in congenital macrothrombocytopenia.


Asunto(s)
Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Trombocitopenia/congénito , Trombocitopenia/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Mutación Missense , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombocitopenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA