Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 38(5): 733-5, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455281

RESUMEN

In this Letter, we propose and demonstrate a high-speed and power-efficient thermo-optic switch using an adiabatic bend with a directly integrated silicon heater to minimize the heat capacity and therein maximize the performance of the thermo-optic switch. A rapid, τ=2.4 µs thermal time constant and a low electrical power consumption of P(π)=12.7 mW/π-phase shift were demonstrated representing a P(π)τ product of only 30.5 mW·µs in a compact device with a phase shifter of only ~10 µm long.

2.
Opt Express ; 19(22): 21989-2003, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109050

RESUMEN

Vertical junction resonant microdisk modulators and switches have been demonstrated with exceptionally low power consumption, low-voltage operation, high-speed, and compact size. This paper reviews the progress of vertical junction microdisk modulators, provides detailed design data, and compares vertical junction performance to lateral junction performance. The use of a vertical junction maximizes the overlap of the depletion region with the optical mode thereby minimizing both the drive voltage and power consumption of a depletion-mode modulator. Further, the vertical junction enables contact to be made from the interior of the resonator and therein a hard outer wall to be formed that minimizes radiation in small diameter resonators, further reducing the capacitance and drive power of the modulator. Initial simple vertical junction modulators using depletion-mode operation demonstrated the first sub-100 fJ/bit silicon modulators. With more intricate doping schemes and through the use of AC-coupled drive signals, 3.5 µm diameter vertical junction microdisk modulators have recently achieved a communications efficiency of 3 fJ/bit, making these modulators the smallest and lowest power modulators demonstrated to date, in any material system. Additionally, the demonstration was performed at 12.5 Gb/s, required a peak-to-peak signal level of only 1 V, and achieved bit-error-rates below 10(-12) without requiring signal pre-emphasis. As an additional benefit to the use of interior contacts, higher-order active filters can be constructed from multiple vertical-junction modulators without interference of the electrodes. Doing so, we demonstrated second-order active high-speed bandpass switches with ~2.5 ns switching speeds, and power penalties of only 0.4 dB. Through the use of vertical junctions in resonant modulators, we have achieved the lowest power consumption, lowest voltage, and smallest silicon modulators demonstrated to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA