Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 148(3): 358-363, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29546303

RESUMEN

Background: Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Objective: Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Methods: Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 µg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Results: Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. Conclusion: We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S-adenosylmethionine pool which is depleted in this condition.


Asunto(s)
Carbono/metabolismo , Formiatos/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Deficiencia de Vitamina B 12/complicaciones , Vitamina B 12/sangre , Animales , Dióxido de Carbono/metabolismo , Citosol/metabolismo , Ácido Fólico/sangre , Glicina/metabolismo , Masculino , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , S-Adenosilmetionina/metabolismo , Sarcosina/metabolismo , Serina/metabolismo , Deficiencia de Vitamina B 12/sangre
2.
J Biol Chem ; 292(34): 14050-14065, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28710282

RESUMEN

Nonalcoholic fatty liver disease (steatosis) is the most prevalent liver disease in the Western world. One of the advanced pathologies is nonalcoholic steatohepatitis (NASH), which is associated with induction of the unfolded protein response (UPR) and disruption of autophagic flux. However, the mechanisms by which these processes contribute to the pathogenesis of human diseases are unclear. Herein, we identify the α isoform of the inhibitor of Bruton's tyrosine kinase (IBTKα) as a member of the UPR, whose expression is preferentially translated during endoplasmic reticulum (ER) stress. We found that IBTKα is located in the ER and associates with proteins LC3b, SEC16A, and SEC31A and plays a previously unrecognized role in phagophore initiation from ER exit sites. Depletion of IBTKα helps prevent accumulation of autophagosome intermediates stemming from exposure to saturated free fatty acids and rescues hepatocytes from death. Of note, induction of IBTKα and the UPR, along with inhibition of autophagic flux, was associated with progression from steatosis to NASH in liver biopsies. These results indicate a function for IBTKα in NASH that links autophagy with activation of the UPR.


Asunto(s)
Proteínas Portadoras/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Respuesta de Proteína Desplegada , Proteínas Adaptadoras Transductoras de Señales , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Biomarcadores/metabolismo , Biopsia , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Progresión de la Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Hígado/inmunología , Hígado/patología , Hígado/fisiopatología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción CHOP/antagonistas & inhibidores , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
3.
J Biol Chem ; 291(33): 16927-35, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27358398

RESUMEN

Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5'-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Sistemas de Lectura Abierta/fisiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Mensajero/metabolismo , Estrés Fisiológico , Animales , Humanos
4.
J Biol Chem ; 291(26): 13780-8, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129771

RESUMEN

The unfolded protein response (UPR) maintains protein homeostasis by governing the processing capacity of the endoplasmic reticulum (ER) to manage ER client loads; however, key regulators within the UPR remain to be identified. Activation of the UPR sensor PERK (EIFAK3/PEK) results in the phosphorylation of the α subunit of eIF2 (eIF2α-P), which represses translation initiation and reduces influx of newly synthesized proteins into the overloaded ER. As part of this adaptive response, eIF2α-P also induces a feedback mechanism through enhanced transcriptional and translational expression of Gadd34 (Ppp1r15A),which targets type 1 protein phosphatase for dephosphorylation of eIF2α-P to restore protein synthesis. Here we describe a novel mechanism by which Gadd34 expression is regulated through the activity of the zinc finger transcription factor NMP4 (ZNF384, CIZ). NMP4 functions to suppress bone anabolism, and we suggest that this occurs due to decreased protein synthesis of factors involved in bone formation through NMP4-mediated dampening of Gadd34 and c-Myc expression. Loss of Nmp4 resulted in an increase in c-Myc and Gadd34 expression that facilitated enhanced ribosome biogenesis and global protein synthesis. Importantly, protein synthesis was sustained during pharmacological induction of the UPR through a mechanism suggested to involve GADD34-mediated dephosphorylation of eIF2α-P. Sustained protein synthesis sensitized cells to pharmacological induction of the UPR, and the observed decrease in cell viability was restored upon inhibition of GADD34 activity. We conclude that NMP4 is a key regulator of ribosome biogenesis and the UPR, which together play a central role in determining cell viability during endoplasmic reticulum stress.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína Fosfatasa 1/biosíntesis , Ribosomas/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Matriz Nuclear/genética , Fosforilación/fisiología , Proteína Fosfatasa 1/genética , Ribosomas/genética , Factores de Transcripción/genética
5.
J Biol Chem ; 291(20): 10824-35, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27002157

RESUMEN

In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis while concomitantly promoting preferential translation of specific transcripts associated with stress adaptation. Translation of the glutamyl-prolyl-tRNA synthetase gene EPRS is enhanced in response to eIF2α-P. To identify the underlying mechanism of translation control, we employed biochemical approaches to determine the regulatory features by which upstream ORFs (uORFs) direct downstream translation control and expression of the EPRS coding region. Our findings reveal that translation of two inhibitory uORFs encoded by noncanonical CUG and UUG initiation codons in the EPRS mRNA 5'-leader serve to dampen levels of translation initiation at the EPRS coding region. By a mechanism suggested to involve increased translation initiation stringency during stress-induced eIF2α-P, we observed facilitated ribosome bypass of these uORFs, allowing for increased translation of the EPRS coding region. Importantly, EPRS protein expression is enhanced through this preferential translation mechanism in response to multiple known activators of eIF2α-P and likely serves to facilitate stress adaptation in response to a variety of cellular stresses. The rules presented here for the regulated ribosome bypass of noncanonical initiation codons in the EPRS 5'-leader add complexity into the nature of uORF-mediated translation control mechanisms during eIF2α-P and additionally illustrate the roles that previously unexamined uORFs with noncanonical initiation codons can play in modulating gene expression.


Asunto(s)
Aminoacil-ARNt Sintetasas/biosíntesis , Codón Iniciador/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Codón Iniciador/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Ratones Noqueados
6.
J Biol Chem ; 291(12): 6546-58, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26817837

RESUMEN

Upon exposure to environmental stress, phosphorylation of the α subunit of eIF2 (eIF2α-P) represses global protein synthesis, coincident with preferential translation of gene transcripts that mitigate stress damage or alternatively trigger apoptosis. Because there are multiple mammalian eIF2 kinases, each responding to different stress arrangements, this translational control scheme is referred to as the integrated stress response (ISR). Included among the preferentially translated mRNAs induced by eIF2α-P is that encoding the transcription factor CHOP (DDIT3/GADD153). Enhanced levels of CHOP promote cell death when ISR signaling is insufficient to restore cell homeostasis. Preferential translation of CHOP mRNA occurs by a mechanism involving ribosome bypass of an inhibitory upstream ORF (uORF) situated in the 5'-leader of the CHOP mRNA. In this study, we used biochemical and genetic approaches to define the inhibitory features of the CHOP uORF and the biological consequences of loss of the CHOP uORF on CHOP expression during stress. We discovered that specific sequences within the CHOP uORF serve to stall elongating ribosomes and prevent ribosome reinitiation at the downstream CHOP coding sequence. As a consequence, deletion of the CHOP uORF substantially increases the levels and modifies the pattern of induction of CHOP expression in the ISR. Enhanced CHOP expression leads to increased expression of key CHOP target genes, culminating in increased cell death in response to stress.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Estrés Fisiológico , Secuencia de Aminoácidos , Animales , Supervivencia Celular , Células Cultivadas , Secuencia Conservada , Factor 2 Eucariótico de Iniciación/fisiología , Fibroblastos/metabolismo , Ratones , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
7.
J Biol Chem ; 290(47): 28257-28271, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26446796

RESUMEN

In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis to conserve resources and facilitate preferential translation of transcripts that promote stress adaptation. Preferentially translated GADD34 (PPP1R15A) and constitutively expressed CReP (PPP1R15B) function to dephosphorylate eIF2α-P and restore protein synthesis. The 5'-leaders of GADD34 and CReP contain two upstream ORFs (uORFs). Using biochemical and genetic approaches we show that features of these uORFs are central for their differential expression. In the absence of stress, translation of an inhibitory uORF in GADD34 acts as a barrier that prevents reinitiation at the GADD34 coding region. Enhanced eIF2α-P during stress directs ribosome bypass of the uORF, facilitating translation of the GADD34 coding region. CReP expression occurs independent of eIF2α-P via an uORF that allows for translation reinitiation at the CReP coding region independent of stress. Importantly, alterations in the GADD34 uORF affect the status of eIF2α-P, translational control, and cell adaptation to stress. These results show that properties of uORFs that permit ribosome reinitiation are critical for directing gene-specific translational control in the integrated stress response.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Estrés Fisiológico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , ADN , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fosforilación , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética/fisiología
8.
Mol Biol Cell ; 26(12): 2190-204, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25904325

RESUMEN

Free fatty acid induction of inflammation and cell death is an important feature of nonalcoholic steatohepatitis (NASH) and has been associated with disruption of the endoplasmic reticulum and activation of the unfolded protein response (UPR). After chronic UPR activation, the transcription factor CHOP (GADD153/DDIT3) triggers cell death; however, the mechanisms linking the UPR or CHOP to hepatoceullular injury and inflammation in the pathogenesis of NASH are not well understood. Using HepG2 and primary human hepatocytes, we found that CHOP induces cell death and inflammatory responses after saturated free fatty acid exposure by activating NF-κB through a pathway involving IRAK2 expression, resulting in secretion of cytokines IL-8 and TNFα directly from hepatocytes. TNFα facilitates hepatocyte death upon exposure to saturated free fatty acids, and secretion of both IL-8 and TNFα contribute to inflammation. Of interest, CHOP/NF-κB signaling is not conserved in primary rodent hepatocytes. Our studies suggest that CHOP plays a vital role in the pathophysiology of NASH by induction of secreted factors that trigger inflammation and hepatocellular death via a signaling pathway specific to human hepatocytes.


Asunto(s)
FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Factor de Transcripción CHOP/metabolismo , Animales , Apoptosis , Estrés del Retículo Endoplásmico , Humanos , Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal
9.
Stem Cells ; 33(3): 925-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25385494

RESUMEN

While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies.


Asunto(s)
Células Eritroides/citología , Células Eritroides/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ribosomas/metabolismo , Animales , Diferenciación Celular/fisiología , Eritropoyesis/fisiología , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética
10.
J Biol Chem ; 290(4): 2244-50, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25480787

RESUMEN

It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [(13)C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 µmol·h(-1)·100 g of body weight(-1) in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.


Asunto(s)
Deficiencia de Ácido Fólico/metabolismo , Ácido Fólico/química , Formiatos/química , Mitocondrias/metabolismo , Animales , Colina/química , Dimetilglicina-Deshidrogenasa , Formaldehído/química , Glicina/química , Histidina/química , Hígado/metabolismo , Masculino , Metionina/química , Mitocondrias Hepáticas/metabolismo , Oxígeno/química , Ratas , Ratas Sprague-Dawley , Sarcosina-Deshidrogenasa/metabolismo , Serina/química , Tetrahidrofolatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...