Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pediatr ; 211: 193-200.e2, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31133280

RESUMEN

OBJECTIVE: To evaluate the performance of a 2-tiered newborn screening method for mucopolysaccharidosis type I (MPS I) in North Carolina. STUDY DESIGN: The screening algorithm included a flow injection analysis-tandem mass spectrometry assay as a first-tier screening method to measure α-L-iduronidase (IDUA) enzyme activity and Sanger sequencing of the IDUA gene on dried blood spots as a second-tier assay. The screening algorithm was revised to incorporate the Collaborative Laboratory Integrated Reports, an analytical interpretive tool, to reduce the false-positive rate. A medical history, physical examination, IDUA activity, and urinary glycosaminoglycan (GAG) analysis were obtained on all screen-positive infants. RESULTS: A total of 62 734 specimens were screened with 54 screen-positive samples using a cut-off of 15% of daily mean IDUA activity. The implementation of Collaborative Laboratory Integrated Reports reduced the number of specimens that screened positive to 19 infants. Of the infants identified as screen-positive, 1 had elevated urinary GAGs and a homozygous pathogenic variant associated with the severe form of MPS I. All other screen-positive infants had normal urinary GAG analysis; 13 newborns had pseudodeficiency alleles, 3 newborns had variants of unknown significance, and 2 had heterozygous pathogenic variants. CONCLUSIONS: An infant with severe MPS I was identified and referred for a hematopoietic stem cell transplant. Newborn IDUA enzyme deficiency is common in North Carolina, but most are due to pseudodeficiency alleles in infants with normal urinary GAG analysis and no evidence of disease. The pilot study confirmed the need for second-tier testing to reduce the follow-up burden.


Asunto(s)
Mucopolisacaridosis I/diagnóstico , Tamizaje Neonatal , Algoritmos , Dermatán Sulfato/orina , Pruebas Genéticas , Variación Genética , Glicosaminoglicanos/orina , Heparitina Sulfato/orina , Humanos , Iduronidasa/sangre , Iduronidasa/genética , Recién Nacido , Mucopolisacaridosis I/genética , North Carolina , Derivación y Consulta/estadística & datos numéricos , Análisis de Secuencia , Espectrometría de Masas en Tándem
2.
PLoS Genet ; 11(10): e1005493, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26439490

RESUMEN

Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces.


Asunto(s)
Blastomyces/genética , Chrysosporium/genética , Genoma Fúngico , Transcriptoma/genética , Animales , Blastomyces/patogenicidad , Blastomicosis/genética , Blastomicosis/microbiología , Chrysosporium/patogenicidad , Histoplasmosis/genética , Histoplasmosis/microbiología , Humanos , Macrófagos/microbiología , Ratones , Paracoccidioidomicosis/genética , Paracoccidioidomicosis/microbiología
3.
PLoS Negl Trop Dis ; 8(12): e3348, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474325

RESUMEN

Paracoccidiodomycosis (PCM) is a clinically important fungal disease that can acquire serious systemic forms and is caused by the thermodimorphic fungal Paracoccidioides spp. PCM is a tropical disease that is endemic in Latin America, where up to ten million people are infected; 80% of reported cases occur in Brazil, followed by Colombia and Venezuela. To enable genomic studies and to better characterize the pathogenesis of this dimorphic fungus, two reference strains of P. brasiliensis (Pb03, Pb18) and one strain of P. lutzii (Pb01) were sequenced [1]. While the initial draft assemblies were accurate in large scale structure and had high overall base quality, the sequences had frequent small scale defects such as poor quality stretches, unknown bases (N's), and artifactual deletions or nucleotide duplications, all of which caused larger scale errors in predicted gene structures. Since assembly consensus errors can now be addressed using next generation sequencing (NGS) in combination with recent methods allowing systematic assembly improvement, we re-sequenced the three reference strains of Paracoccidioides spp. using Illumina technology. We utilized the high sequencing depth to re-evaluate and improve the original assemblies generated from Sanger sequence reads, and obtained more complete and accurate reference assemblies. The new assemblies led to improved transcript predictions for the vast majority of genes of these reference strains, and often substantially corrected gene structures. These include several genes that are central to virulence or expressed during the pathogenic yeast stage in Paracoccidioides and other fungi, such as HSP90, RYP1-3, BAD1, catalase B, alpha-1,3-glucan synthase and the beta glucan synthase target gene FKS1. The improvement and validation of these reference sequences will now allow more accurate genome-based analyses. To our knowledge, this is one of the first reports of a fully automated and quality-assessed upgrade of a genome assembly and annotation for a non-model fungus.


Asunto(s)
Genoma Fúngico , Paracoccidioides/genética , Paracoccidioidomicosis/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA