Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 19(11): 758-766, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367550

RESUMEN

The National Antimicrobial Resistance Monitoring System (NARMS) is a One Health program in the United States that collects data on antimicrobial resistance in enteric bacteria from humans, animals, and the environment. Salmonella is a major pathogen tracked by the NARMS retail meat arm but currently lacks a uniform screening method. We evaluated a loop-mediated isothermal amplification (LAMP) assay for the rapid screening of Salmonella from 69 NARMS retail meat and poultry samples. All samples were processed side by side for culture isolation using two protocols, one from NARMS and the other one described in the U.S. Food and Drug Administration's Bacteriological Analytical Manual (BAM). Overall, 10 (14.5%) samples screened positive by the Salmonella LAMP assay. Of those, six were culture-confirmed by the NARMS protocol and six by the BAM method with overlap on four samples. No Salmonella isolates were recovered from samples that screened negative with LAMP. These results suggested 100% sensitivity for LAMP in reference to culture. Antimicrobial susceptibility testing and whole-genome sequencing analysis confirmed identities of these isolates. Using the BAM protocol, all Salmonella isolates were recovered from samples undergoing Rappaport-Vassiliadis medium selective enrichment and presumptive colonies (n = 130) were dominated by Hafnia alvei (44.6%), Proteus mirabilis (22.3%), and Morganella morganii (9.9%) based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This method comparison study clearly demonstrated the benefit of a rapid, robust, and highly sensitive molecular screening method in streamlining the laboratory workflow. Fourteen NARMS retail meat sites further verified the performance of this assay using a portion of their routine samples, reporting an overall specificity of 98.8% and sensitivity of 90%. As of July 2022, the vast majority of NARMS retail meat sites have adopted the Salmonella LAMP assay for rapid screening of Salmonella in all samples.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Animales , Estados Unidos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Salmonella , Carne/microbiología , Pruebas de Sensibilidad Microbiana
2.
J AOAC Int ; 105(6): 1503-1515, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35575315

RESUMEN

BACKGROUND: Improvement in Salmonella detection methods greatly enhances the efficiency of various food testing programs. A Salmonella loop-mediated isothermal amplification (LAMP) assay has been validated in animal food through multi-laboratory validation. OBJECTIVE: The study aimed to demonstrate the versatility of this molecular assay while expanding it to multiple platforms and various reagent choices for use in animal food testing. METHODS: Following the U.S. Food and Drug Administration (FDA)'s Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, we examined the inclusivity, exclusivity, and LOD of the assay using two platforms (7500 Fast and Genie II) and three LAMP master mixes (GspSSD, GspSSD2.0, and WarmStart) in seven animal food matrixes (dry cat food, dry dog food, cattle feed, dairy feed, horse feed, poultry feed, and swine feed). The FDA's Bacteriological Analytical Manual (BAM) Salmonella culture method was the reference method. RESULTS: Inclusivity and exclusivity data were consistent among all six platform and master mix combinations with a few exceptions. Comparable LODs were observed down to the single-cell level (WarmStart was 10-fold less sensitive). Performance was similar to the BAM method for detecting fractional positive results in seven animal food matrixes. Nonetheless, LAMP time to positive results and annealing/melting temperature differed among master mixes and platforms. CONCLUSION: The Salmonella LAMP assay was successfully validated in two platforms and three master mixes, making it a flexible tool for use by the FDA's field laboratories in regulatory testing of animal food and for adoption by other food testing programs. HIGHLIGHTS: We demonstrated the LAMP assay's versatility on two platforms and three master mixes for the rapid and reliable screening of Salmonella in seven animal food matrixes. GspSSD2.0 was the fastest master mix (time to positive results as early as 3.5 min) while Genie II had several attractive features from a user perspective.


Asunto(s)
Microbiología de Alimentos , Salmonella , Bovinos , Porcinos , Gatos , Caballos , Perros , Animales , Salmonella/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Alimentación Animal , Aves de Corral
3.
J Food Prot ; 84(3): 399-407, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33057673

RESUMEN

ABSTRACT: Raw pet food, composed of raw meat and vegetables, has increased in popularity in recent years. Multiple surveys and frequent recalls indicate that this commodity has a high risk of contamination with Salmonella and other foodborne pathogens. Improved screening methods are needed to meet the growing demand for testing. This matrix verification study aimed to apply a Salmonella loop-mediated isothermal amplification (LAMP) method, recently completed multilaboratory validation in dry dog food, in several raw pet food matrices, following the U.S. Food and Drug Administration (FDA)'s method validation guidelines. Five types of raw pet food, consisting of freeze-dried beef and chicken treats and frozen beef, pork, and turkey complete foods, were evaluated. For each matrix, two sets of ten 25-g test portions (seven inoculated with ≤30 cells of Salmonella Typhimurium and three uninoculated controls) were examined. One set was preenriched in buffered peptone water and the other one was preenriched in lactose broth, which was followed by LAMP screening using two isothermal master mixes (ISO-001 and ISO-004). All results were confirmed by culture as specified in the FDA Bacteriological Analytical Manual (BAM). The LAMP method accurately detected Salmonella in all inoculated test portions of the five raw pet food samples, regardless of the preenrichment broth used. Positive results could be obtained within 4 min of the LAMP run using the ISO-004 master mix. All uninoculated controls tested negative using LAMP or BAM. In addition, one turkey-based complete pet food sample was found to be already contaminated with three Salmonella serovars harboring multiple antimicrobial resistance genes. The Salmonella LAMP method offers a rapid, reliable, and robust tool for routine screening of Salmonella in raw pet food, which will help better ensure product safety and protect public health.


Asunto(s)
Microbiología de Alimentos , Técnicas de Amplificación de Ácido Nucleico , Animales , Bovinos , Perros , Carne , Técnicas de Diagnóstico Molecular , Alimentos Crudos
4.
J Vis Exp ; (159)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32510493

RESUMEN

Loop-mediated isothermal amplification (LAMP) has emerged as a powerful nucleic acid amplification test for the rapid detection of numerous bacterial, fungal, parasitic, and viral agents. Salmonella is a bacterial pathogen of worldwide food safety concern, including food for animals. Presented here is a multi-laboratory-validated Salmonella LAMP protocol that can be used to rapidly screen animal food for the presence of Salmonella contamination and can also be used to confirm presumptive Salmonella isolates recovered from all food categories. The LAMP assay specifically targets the Salmonella invasion gene (invA) and is rapid, sensitive, and highly specific. Template DNAs are prepared from enrichment broths of animal food or pure cultures of presumptive Salmonella isolates. The LAMP reagent mixture is prepared by combining an isothermal master mix, primers, DNA template, and water. The LAMP assay runs at a constant temperature of 65 °C for 30 min. Positive results are monitored via real-time fluorescence and can be detected as early as 5 min. The LAMP assay exhibits high tolerance to inhibitors in animal food or culture medium, serving as a rapid, reliable, robust, cost-effective, and user-friendly method for screening and confirming Salmonella. The LAMP method has recently been incorporated into the U.S. Food and Drug Administration's Bacteriological Analytical Manual (BAM) Chapter 5.


Asunto(s)
Alimentación Animal/microbiología , Microbiología de Alimentos/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Salmonella/genética , Salmonella/aislamiento & purificación , Animales , Cartilla de ADN/genética , Límite de Detección , Temperatura , Factores de Tiempo
5.
Front Microbiol ; 10: 562, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984125

RESUMEN

Loop-mediated isothermal amplification (LAMP) has gained wide popularity in the detection of Salmonella in foods owing to its simplicity, rapidity, and robustness. This multi-laboratory validation (MLV) study aimed to validate a Salmonella LAMP-based method against the United States Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method in a representative animal food matrix (dry dog food). Fourteen independent collaborators from seven laboratories in the United States and Canada participated in the study. Each collaborator received two sets of 24 blind-coded dry dog food samples (eight uninoculated; eight inoculated at a low level, 0.65 MPN/25 g; and eight inoculated at a high level, 3.01 MPN/25 g) and initiated the testing on the same day. The MLV study used an unpaired design where different test portions were analyzed by the LAMP and BAM methods using different preenrichment protocols (buffered peptone water for LAMP and lactose broth for BAM). All LAMP samples were confirmed by culture using the BAM method. BAM samples were also tested by LAMP following lactose broth preenrichment (paired samples). Statistical analysis was carried out by the probability of detection (POD) per AOAC guidelines and by a random intercept logistic regression model. Overall, no significant differences in POD between the Salmonella LAMP and BAM methods were observed with either unpaired or paired samples, indicating the methods were comparable. LAMP testing following preenrichment in buffered peptone water or lactose broth also resulted in insignificant POD differences (P > 0.05). The MLV study strongly supports the utility and applicability of this rapid and reliable LAMP method in routine regulatory screening of Salmonella in animal food.

6.
Sci Rep ; 7(1): 11017, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887450

RESUMEN

Distillers grains are co-products of the corn ethanol industry widely used in animal feed. We examined the effects of erythromycin, penicillin, and virginiamycin at low concentrations reflective of those detected in distillers grains on bacterial resistance selection. At 0.1 µg/ml erythromycin, macrolide-resistant mutants were induced in one Campylobacter coli and one Enterococcus faecium strain, while these strains plus three additional C. coli, one additional E. faecium, and one C. jejuni also developed resistance when exposed to 0.25 µg/ml erythromycin. At 0.5 µg/ml erythromycin, a total of eight strains (four Campylobacter and four Enterococcus) obtained macrolide-resistant mutants, including two strains from each genus that were not selected at lower erythromycin concentrations. For penicillin, three of five E. faecium strains but none of five Enterococcus faecalis strains consistently developed resistance at all three selection concentrations. Virginiamycin at two M1:S1 ratios did not induce resistance development in four out of five E. faecium strains; however, increased resistance was observed in the fifth one under 0.25 and 0.5 µg/ml virginiamycin selections. Although not yet tested in vivo, these findings suggest a potential risk of stimulating bacterial resistance development in the animal gut when distillers grains containing certain antibiotic residues are used in animal feed.


Asunto(s)
Antibacterianos/farmacología , Campylobacter/efectos de los fármacos , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Eritromicina/farmacología , Penicilinas/farmacología , Virginiamicina/farmacología , Tasa de Mutación , Selección Genética
7.
Food Microbiol ; 62: 289-297, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889161

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has been detected in retail meats, although large-scale studies are scarce. We conducted a one-year survey in 2010-2011 within the framework of the National Antimicrobial Resistance Monitoring System. Among 3520 retail meats collected from eight U.S. states, 982 (27.9%) contained S. aureus and 66 (1.9%) were positive for MRSA. Approximately 10.4% (107/1032) of S. aureus isolates, including 37.2% (29/78) of MRSA, were multidrug-resistant (MDRSA). Turkey had the highest MRSA prevalence (3.5%), followed by pork (1.9%), beef (1.7%), and chicken (0.3%). Whole-genome sequencing was performed for all 66 non-redundant MRSA. Among five multilocus sequence types identified, ST8 (72.7%) and ST5 (22.7%) were most common and livestock-associated MRSA ST398 was assigned to one pork isolate. Eleven spa types were represented, predominately t008 (43.9%) and t2031 (22.7%). All four types of meats harbored t008, whereas t2031 was recovered from turkey only. The majority of MRSA (84.8%) possessed SCCmec IV and 62.1% harbored Panton-Valentine leukocidin. Pulsed-field gel electrophoresis showed that all ST8 MRSA belonged to the predominant human epidemic clone USA300, and others included USA100 and USA200. We conclude that a diverse MRSA population was present in U.S. retail meats, albeit at low prevalence.


Asunto(s)
Microbiología de Alimentos , Carne/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Bovinos , Farmacorresistencia Bacteriana Múltiple , Exotoxinas/genética , Genes Bacterianos , Genoma Bacteriano , Humanos , Leucocidinas/genética , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Análisis de Secuencia de ADN , Staphylococcus aureus/clasificación , Porcinos , Turquía , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...