Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; : e2975, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747033

RESUMEN

Fire and herbivory have profound effects on vegetation in savanna ecosystems, but little is known about how different herbivore groups influence vegetation dynamics after fire. We assessed the separate and combined effects of herbivory by cattle and wild meso- and megaherbivores on postfire herbaceous vegetation cover, species richness, and species turnover in a savanna ecosystem in central Kenya. We measured these vegetation attributes for five sampling periods (from 2013 to 2017) in prescribed burns and unburned areas located within a series of replicated long-term herbivore exclosures that allow six different combinations of cattle and wild meso- and megaherbivores (elephants and giraffes). Vegetation cover (grasses, mainly) and species richness were initially reduced by burning but recovered by 15-27 months after fire, suggesting strong resilience to infrequent fire. However, the rates of recovery differed in plots accessible by different wild and domestic herbivore guilds. Wildlife (but not cattle) delayed postfire recovery of grasses, and the absence of wildlife (with or without cattle) delayed recovery of forbs. Herbivory by only cattle increased grass species richness in burned relative to unburned areas. Herbivory by cattle (with or without wildlife), however, reduced forb species richness in burned relative to unburned areas. Herbivory by wild ungulates (but not cattle) increased herbaceous species turnover in burned relative to unburned areas. Megaherbivores had negligible modifying effects on these results. This study demonstrates that savanna ecosystems are remarkably resilient to infrequent fires, but postfire grazing by cattle and wild mesoherbivores exerts different effects on recovery trajectories of herbaceous vegetation.

2.
Ecology ; 105(1): e4188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877213

RESUMEN

Year of establishment can be a critical driver of plant communities with the establishment stage of community development particularly susceptible to factors including ambient rain, temperature, and other temporally variable drivers (e.g., seed and seedling predators). However, while year effects have been shown to drive community structure at local (patch) scales, it is yet unexplored how these within-patch effects scale up to drive landscape-level patterns of biodiversity. These dynamics are likely to be critical but are overlooked in many systems including those with high-frequency disturbance regimes or active management. Here we leveraged a series of field-based grassland mesocosms established identically at three sites across 5 years, and each monitored for 4-8 years. We compared the strength of these temporal and spatial drivers (year effects and site effects) on consequent patterns of spatial and temporal variability (beta diversity and turnover) between plots seeded with native perennial species versus those seeded with nonnative annual species. The composition of plots seeded with perennial species showed strong effects of planting year and consequently exhibited higher beta diversity within sites (across mesocosms established in five different years within sites), while plots seeded with annual species had higher between-site variation but low beta diversity within sites. Plots with annual species were also more temporally variable than plots with perennial species. These findings have important implications for our understanding of key drivers of biodiversity across landscapes. Specifically, we showed that variable trajectories in community composition generated by site and year effects during establishment can promote beta diversity across landscapes dominated by perennial species, but are considerably less impactful in annual-dominated systems. These findings further our understanding of the importance of assembly dynamics on landscape-scale patterns of diversity, and have important management implications for restoration efforts.


Asunto(s)
Biodiversidad , Plantas , Semillas , Plantones , Lluvia , Ecosistema
3.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357858

RESUMEN

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Asunto(s)
Ecosistema , Plantas , Filogenia , Semillas , Fenotipo , Hojas de la Planta
4.
Ecol Appl ; 32(3): e2520, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918420

RESUMEN

Over a quarter of the world's land surface is grazed by cattle and other livestock, which are replacing wild herbivores, potentially impairing ecosystem structure, and functions. Previous research suggests that cattle at moderate stocking rates can functionally replace wild herbivores in shaping understory communities. However, it is uncertain whether this is also true under high stocking rates and the effects of wild herbivore on plant communities are moderate, enhanced, or simply additive to the effects of cattle at high stocking rates. To evaluate the influence of cattle stocking rates on the ability of cattle to functionally replace wild herbivores and test for interactive effects between cattle and wild herbivores in shaping understory vegetation, we assessed herbaceous vegetation in a long-term exclosure experiment in a semi-arid savanna in central Kenya that selectively excludes wild mesoherbivores (50-1000 kg) and megaherbivores (elephant and giraffe). We tested the effects of cattle stocking rate (zero/moderate/high) on herbaceous vegetation (diversity, composition, leafiness). We also tested how those effects depend on the presence of wild mesoherbivores and megaherbivores. We found that herbaceous community composition (primary ordination axis) was better explained by the presence/absence of herbivore types than by total herbivory, suggesting that herbivore identity is a more important determinant of community composition than total herbivory at high cattle stocking rates. The combination of wild mesoherbivores and cattle stocked at high rates led to increased bare ground and annual grass cover, reduced perennial grass cover and understory leafiness, and enhanced understory diversity. These shifts were weaker or absent when cattle were stocked at high stocking rates in the absence of wild mesoherbivores. Megaherbivores tempered the effects of cattle stocked at high rates on herbaceous community composition but amplified the effects of high cattle stocking rate on bare ground and understory diversity. Our results show that cattle at high stocking rates do not functionally replace wild herbivores in shaping savanna herbaceous communities contrary to previous findings at moderate stocking rates. In mixed-use rangelands, interactions between cattle stocking rate and wild herbivore presence can lead to non-additive vegetation responses with important implications for both wildlife conservation and livestock production.


Asunto(s)
Elefantes , Herbivoria , Animales , Animales Salvajes , Bovinos , Ecosistema , Elefantes/fisiología , Plantas
5.
Ecol Evol ; 11(12): 7226-7238, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188808

RESUMEN

Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long-lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape-scale experimental manipulations-the first a multi-guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)-to demonstrate that patterns in Odontotermes termite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15-1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore-driven resource availability.

6.
J Anim Ecol ; 90(11): 2510-2522, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34192343

RESUMEN

The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2-1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.


Asunto(s)
Elefantes , Jirafas , Animales , Ecosistema , Herbivoria , Filogenia
7.
PLoS One ; 16(4): e0248855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822786

RESUMEN

Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experiment in an African savanna rangeland offers insight into the potentials and pitfalls of the rewilding endeavor as they relate to the native plant community. A broad theme that has emerged from this research is that entire plant communities, as well as individual plants, adjust to the absence of herbivores in ways that can ill-prepare them for the return of these herbivores. Three lines of evidence suggest that these "naïve" individuals, populations, and communities are likely to initially suffer from herbivore rewilding. First, plots protected from wild herbivores for the past 25 years have developed rich diversity of woody plants that are absent from unfenced plots, and presumably would disappear upon rewilding. Second, individuals of the dominant tree in this system, Acacia drepanolobium, greatly reduce their defences in the absence of browsers, and the sudden arrival of these herbivores (in this case, through a temporary fence break), resulted in far greater elephant damage than for their conspecifics in adjacent plots that had been continually exposed to herbivory. Third, the removal of herbivores favoured the most palatable grass species, and a large number of rarer species, which presumably would be at risk from herbivore re-introduction. In summary, the native communities that we observe in defaunated landscapes may be very different from their pre-defaunation states, and we are likely to see some large changes to these plant communities upon rewilding with large herbivores, including potential reductions in plant diversity. Lastly, our experimental manipulation of cattle represents an additional test of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife (in particular their greater densities), but in other ways they may serve as ecological surrogates for wildlife, which could buffer ecosystems from some of the ecological costs of rewilding. More fundamentally, African savannah ecosystems represent a challenge to traditional Western definitions of "wilderness" as ecosystems free of human impacts. We support the suggestion that as we "rewild" our biodiversity landscapes, we redefine "wildness" in the 21st Century to be inclusive of (low impact, and sometimes traditional) human practices that are compatible with the sustainability of native (and re-introduced) biodiversity.


Asunto(s)
Animales Salvajes , Biodiversidad , Pradera , Herbivoria , Plantas , África , Animales , Conservación de los Recursos Naturales
8.
Ecology ; 102(4): e03270, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340104

RESUMEN

Grassland and savanna ecosystems, important for both livelihoods and biodiversity conservation, are strongly affected by ecosystem drivers such as herbivory, fire, and drought. Interactions among fire, herbivores and vegetation produce complex feedbacks in these ecosystems, but these have rarely been studied in the context of fuel continuity and resultant fire heterogeneity. We carried out 36 controlled burns within replicated experimental plots that had allowed differential access by wild and domestic large herbivores since 1995 in a savanna ecosystem in Kenya. Half of these were reburns of plots burned 5 yr previously. We show here that the fine-scale spatial heterogeneity of fire was greater in plots (1) previously burned, (2) accessible to large herbivores, and especially (3) these two in combination. An additional embedded experiment demonstrated that even small experimental burn-free patches can have strong positive effects on tree saplings, which experienced less damage during controlled burns and quicker postfire recovery. This work highlights the importance of simultaneously examining the interactions between fire and herbivory on fuel heterogeneity, which can have important impacts on the growth of woody saplings in savanna grasslands.


Asunto(s)
Incendios , Herbivoria , Ecosistema , Pradera , Kenia
9.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32900958

RESUMEN

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Asunto(s)
Plantas/clasificación , Secuestro de Carbono , Cambio Climático , Ecosistema , Desarrollo de la Planta , Plantas/metabolismo , Suelo/química
10.
Ecology ; 101(9): e03104, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32455484

RESUMEN

Environmental conditions that vary from year to year can be strong drivers of ecological dynamics, including the composition of newly assembled communities. However, ecologists often chalk such dynamics up to "noise" in ecological experiments. Our lack of attention to such "year effects" hampers our understanding of contingencies in ecological assembly mechanisms and limits the generalizability of research findings. Here, we provide examples from published research demonstrating the importance of year effects during community assembly across study systems. We further quantify these year effects with two case studies-a grassland restoration experiment and a study of postfire conifer recruitment-finding that the effects of initiation year on community composition can dictate community as much, if not more, than the effects of experimental treatments or site. The evidence strongly suggests that year effects are pervasive and profound, and that year effects early in community assembly can drive strong and enduring divergence in community structure and function. Explicit attention to year effects in ecological research serves to illuminate basic ecological principles, allowing for better understanding of contingencies in ecology. These dynamics also have strong implications for applied ecological research, offering new insights into ecological restoration as well as future climate change.


Asunto(s)
Cambio Climático , Ecosistema
11.
Oecologia ; 191(4): 731-743, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31701232

RESUMEN

The persistence and distribution of species under changing climates can be affected by both direct effects of the environment and indirect effects via biotic interactions. However, the relative importance of direct and indirect climate effects on recruitment stages is poorly understood. We conducted a manipulative experiment to test the multiway interaction of direct and competition-mediated effects of climate change on vegetation dynamics. Following stand-replacing fire in California mixed-conifer forest, we seeded two conifer species, Pinus ponderosa and Abies concolor, in two consecutive years, one relatively normal and the other with an unusually wet and snowy winter followed by a hot summer. We additionally manipulated snow amount and competitive environment for both years. We found the effects of the snowpack treatment were contingent upon other abiotic factors (year of seeding) and biotic factors (shrub competition). Under ambient snowpack, shrubs reduced recruitment of P. ponderosa seedlings, but this negative effect disappeared with reduced snowpack. Additionally, the effects of shrubs on seedlings differed between cohorts and by life stage. In a warmer future, decreased snowpack may increase seedling emergence, but hotter and drier summers will decrease seedling survival; the effects of shrubs on conifers may become less negative as temperatures increase.


Asunto(s)
Tracheophyta , California , Cambio Climático , Bosques , Plantones , Temperatura
12.
Ecol Appl ; 29(7): e01973, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31306541

RESUMEN

In order to understand how the effects of land-use change vary among taxa and environmental contexts, we investigate how three types of land-use change have influenced phylogenetic diversity (PD) and species composition of three functionally distinct communities: plants, small mammals, and large mammals. We found large mammal communities were by far the most heavily impacted by land-use change, with areas of attempted large wildlife exclusion and intense livestock grazing, respectively, containing 164 and 165 million fewer years of evolutionary history than conserved areas (~40% declines). The effects of land-use change on PD varied substantially across taxa, type of land-use change, and, for most groups, also across abiotic conditions. This highlights the need for taxa-specific or multi-taxa evaluations, for managers interested in conserving specific groups or whole communities, respectively. It also suggests that efforts to conserve and restore PD may be most successful if they focus on areas of particular land-use types and abiotic conditions. Importantly, we also describe the substantial species turnover and compositional changes that cannot be detected by alpha diversity metrics, emphasizing that neither PD nor other taxonomic diversity metrics are sufficient proxies for ecological integrity. Finally, our results provide further support for the emerging consensus that conserved landscapes are critical to support intact assemblages of some lineages such as large mammals, but that mosaics of disturbed land-uses, including both agricultural and pastoral land, do provide important habitats for a diverse array of plants and small mammals.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura , Animales , Filogenia , Plantas
13.
Ecology ; 100(2): e02571, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30516290

RESUMEN

Disturbance such as wildfire may create opportunities for plant communities to reorganize in response to climate change. The interaction between climate change and disturbance may be particularly important in forests, where many of the foundational plant species (trees) are long-lived and where poor initial tree establishment can result in conversion to shrub- or graminoid-dominated systems. The response of post-disturbance vegetation establishment to post-disturbance weather conditions, particularly to extreme weather, could therefore provide useful information about how forest communities will respond to climate change. We examined the effect of post-fire weather conditions on post-fire tree, shrub, and graminoid recruitment in fire-adapted forests in northern California, USA, by surveying regenerating vegetation in severely burned areas 4-5 yr after 14 different wildfires that burned between 2004 and 2012. This time period (2004-2016) encompassed a wide range of post-fire weather conditions, including a period of extreme drought. For the most common tree species, we observed little evidence of disturbance-mediated community reorganization or range shifts but instead either (1) low sensitivity of recruitment to post-fire weather or (2) weak but widespread decreases in recruitment under unusually dry post-fire conditions, depending on the species. The occurrence of a single strong drought year following fire was more important than a series of moderately dry years in explaining tree recruitment declines. Overall, however, post-fire tree recruitment patterns were explained more strongly by long-term climate and topography and local adult tree species abundance than by post-fire weather conditions. This observation suggests that surviving adult trees can contribute to a "biological inertia" that restricts the extent to which tree community composition will track changes in climate through post-disturbance recruitment. In contrast to our observations in trees, we observed substantial increases in shrub and graminoid establishment under post-fire drought, suggesting that shifts in dominance between functional groups may become more likely in a future with more frequent and intense drought.


Asunto(s)
Sequías , Incendios , California , Cambio Climático , Bosques , Árboles
14.
Ecol Evol ; 8(17): 9074-9085, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30271567

RESUMEN

African savanna termite mounds function as nutrient-rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife-mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.

15.
Ann N Y Acad Sci ; 1429(1): 31-49, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29752729

RESUMEN

African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Research Centre in Laikipia County, Kenya, hosts three such experiments, spanning two adjacent ecosystems and environmental gradients within them: the Kenya Long-Term Exclosure Experiment (KLEE; since 1995), the Glade Legacies and Defaunation Experiment (GLADE; since 1999), and the Ungulate Herbivory Under Rainfall Uncertainty experiment (UHURU; since 2008). Common themes unifying these experiments are (1) evidence of profound effects of large mammalian herbivores on herbaceous and woody plant communities; (2) competition and compensation across herbivore guilds, including rodents; and (3) trophic cascades and other indirect effects. We synthesize findings from the past two decades to highlight generalities and idiosyncrasies among these experiments, and highlight six lessons that we believe are pertinent for conservation. The removal of large mammalian herbivores has dramatic effects on the ecology of these ecosystems; their ability to rebound from these changes (after possible refaunation) remains unexplored.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Ecosistema , Herbivoria , África Oriental , Animales , Pradera , Mamíferos , Simbiosis
16.
Ecol Appl ; 28(2): 323-335, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29140577

RESUMEN

Rainfall and herbivory are fundamental drivers of grassland plant dynamics, yet few studies have examined long-term interactions between these factors in an experimental setting. Understanding such interactions is important, as rainfall is becoming increasingly erratic and native wild herbivores are being replaced by livestock. Livestock grazing and episodic low rainfall are thought to interact, leading to greater community change than either factor alone. We examined patterns of change and stability in herbaceous community composition through four dry periods, or droughts, over 15 years of the Kenya Long-term Exclosure Experiment (KLEE), which consists of six different combinations of cattle, native wild herbivores (e.g., zebras, gazelles), and mega-herbivores (giraffes, elephants). We used principal response curves to analyze the trajectory of change in each herbivore treatment relative to a common initial community and asked how droughts contributed to community change in these treatments. We examined three measures of stability (resistance, variability, and turnover) that correspond to different temporal scales and found that each had a different response to grazing. Treatments that included both cattle and wild herbivores had higher resistance (less net change over 15 years) but were more variable on shorter time scales; in contrast, the more lightly grazed treatments (no herbivores or wild herbivores only) showed lower resistance due to the accumulation of consistent, linear, short-term change. Community change was greatest during and immediately after droughts in all herbivore treatments. But, while drought contributed to directional change in the less grazed treatments, it contributed to both higher variability and resistance in the more heavily grazed treatments. Much of the community change in lightly grazed treatments (especially after droughts) was due to substantial increases in cover of the palatable grass Brachiaria lachnantha. These results illustrate how herbivory and drought can act together to cause change in grassland communities at the moderate to low end of a grazing intensity continuum. Livestock grazing at a moderate intensity in a system with a long evolutionary history of grazing contributed to long-term stability. This runs counter to often-held assumptions that livestock grazing leads to directional, destabilizing shifts in grassland systems.


Asunto(s)
Sequías , Pradera , Herbivoria , Mamíferos , Animales , Bovinos , Kenia
17.
Parasitology ; 145(3): 345-354, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29113602

RESUMEN

East Africa is a global hot spot for the diversity of ixodid ticks. As ectoparasites and as vectors of pathogens, ticks negatively affect the well-being of humans, livestock and wildlife. To prevent tick infestations, livestock owners and managers typically treat livestock with acaricides that kill ticks when they attempt to feed on livestock hosts. Because of the costs of preventing and mitigating tick parasitism, predicting where and when ticks will be abundant is an important challenge in this region. We used a 7-year monthly record of tick abundance on large experimental plots to assess the effects of rainfall, wildlife and cattle on larvae, nymphs and adults of two common tick species, Rhipicephalus pulchellus and Rhipicephalus praetextatus. Nymphal and adult ticks were more abundant when there had been high cumulative rainfall in the prior months. They were less abundant when cattle were present than when only large wild mammals were. Larval abundance was not affected by the presence of cattle, and larvae did not appear to be sensitive to rainfall in prior months, though they were less abundant in our surveys when rainfall was high in the sampling month. The challenges of managing ticks in this region are being exacerbated rapidly by changes in rainfall patterns wrought by climate change, and by overall increases in livestock, making efforts to predict the impacts of these drivers all the more pressing.


Asunto(s)
Ixodidae/fisiología , Lluvia , Rhipicephalus/fisiología , Infestaciones por Garrapatas/veterinaria , Animales , Animales Salvajes/parasitología , Bovinos/parasitología , Clima , Kenia/epidemiología , Larva/fisiología , Ganado/parasitología , Ninfa/fisiología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/prevención & control
18.
Ecology ; 98(5): 1455-1464, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28273343

RESUMEN

Although disturbance theory has been recognized as a useful framework in examining the stability of ant-plant mutualisms, very few studies have examined the effects of fire disturbance on these mutualisms. In myrmecophyte-dominated savannas, fire and herbivory are key drivers that could influence ant-plant mutualisms by causing complete colony mortality and/or decreasing colony size, which potentially could alter dominance hierarchies if subordinate species are more fire resilient. We used a large-scale, replicated fire experiment to examine long-term effects of fire on acacia-ant community composition. To determine if fire shifted ant occupancy from a competitive dominant to a subordinate ant species, we surveyed the acacia-ant community in 6-7 yr old burn sites and examined how the spatial scale of these burns influenced ant community responses. We then used two short-term fire experiments to explore possible mechanisms for the shifts in community patterns observed. Because survival of ant colonies is largely dependent on their ability to detect and escape an approaching fire, we first tested the evacuation response of all four ant species when exposed to smoke (fire signal). Then to better understand how fire and its interaction with large mammal herbivory affect the density of ants per tree, we quantified ant worker density in small prescribed burns within herbivore exclusion plots. We found clear evidence suggesting that fire disturbance favored the subordinate ant Crematogaster nigriceps more than the dominant and strong mutualist ant C. mimosae, whereby C. nigriceps (1) was the only species to occupy a greater proportion of trees in 6-7 yr old burn sites compared to unburned sites, (2) had higher burn/unburn tree ratios with increasing burn size, and (3) evacuated significantly faster than C. mimosae in the presence of smoke. Fire and herbivory had opposite effects on ant density per meter of branch for both C. nigriceps and C. mimosae, with fire decreasing ant densities per meter of branch and the presence of large herbivores increasing ant density. Taken together, these experiments suggest that major ecosystem disturbances like fire can disrupt mutualistic associations and maintain diversity in partner quality and identity despite a clear dominance hierarchy.


Asunto(s)
Acacia/fisiología , Hormigas/fisiología , Simbiosis , Animales , Ecosistema , Incendios , Herbivoria
19.
Ecology ; 98(6): 1623-1630, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28317103

RESUMEN

The order in which species arrive during community assembly can be an important driver of community composition and function. However, the strength of these priority effects can be variable, in part because of strong site and year effects. To understand how priority effects vary in importance with abiotic conditions, we initiated identical community assembly experiments in which we varied the timing of arrival of native and exotic grass species in each of 4 yr across three grassland sites in northern California. This uniquely replicated experiment tested the power of priority to determine initial community structure in a restoration context across a natural range of conditions. There were large and significant differences in both total seeded cover and the strength of priority across sites and years of initiation, confirming the suspicion that most ecological experiments may lack spatial and temporal generality. On the other hand, much of the variation in strength of priority could be related to climate. Strikingly, however, the model fit across the three sites and the first 3 yr of the study (the first nine experiments) was radically altered when we included the fourth year, which was characterized by an unusual weather pattern with higher temporal variability in rainfall (a rainfall pattern predicted to increase with climate change). This year produced relatively low strength of priority, supporting the suggestion that highly variable climates may be associated with lower strength of priority effects. Experiments that examine community assembly over a range of naturally occurring abiotic conditions enhance our ability to predict when priority effects will be important, allowing us to explore shifting patterns of community assembly in the face of climate change and optimize restoration strategies based on environmental conditions.


Asunto(s)
Cambio Climático , Ecosistema , California , Poaceae
20.
Ecol Appl ; 27(1): 143-155, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052507

RESUMEN

Wild herbivores and livestock share the majority of rangelands worldwide, yet few controlled experiments have addressed their individual, additive, and interactive impacts on ecosystem function. While ungulate herbivores generally reduce standing biomass, their effects on aboveground net primary production (ANPP) can vary by spatial and temporal context, intensity of herbivory, and herbivore identity and species richness. Some evidence indicates that moderate levels of herbivory can stimulate aboveground productivity, but few studies have explicitly tested the relationships among herbivore identity, grazing intensity, and ANPP. We used a long-term exclosure experiment to examine the effects of three groups of wild and domestic ungulate herbivores (megaherbivores, mesoherbivore wildlife, and cattle) on herbaceous productivity in an African savanna. Using both field measurements (productivity cages) and satellite imagery, we measured the effects of different herbivore guilds, separately and in different combinations, on herbaceous productivity across both space and time. Results from both productivity cage measurements and satellite normalized difference vegetation index (NDVI) demonstrated a positive relationship between mean productivity and total ungulate herbivore pressure, driven in particular by the presence of cattle. In contrast, we found that variation in herbaceous productivity across space and time was driven by the presence of wild herbivores (primarily mesoherbivore wildlife), which significantly reduced heterogeneity in ANPP and NDVI across both space and time. Our results indicate that replacing wildlife with cattle (at moderate densities) could lead to similarly productive but more heterogeneous herbaceous plant communities in rangelands.


Asunto(s)
Artiodáctilos/fisiología , Biomasa , Elefantes/fisiología , Equidae/fisiología , Pradera , Herbivoria , Animales , Bovinos , Kenia , Fenómenos Fisiológicos de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...