Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(24): 5306-5316, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36222848

RESUMEN

PURPOSE: We hypothesized that resistance to hypomethylating agents (HMA) among patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA. PATIENTS AND METHODS: We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginning with guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle. Primary endpoints were safety and tolerability; secondary endpoints were overall response rate (ORR) and survival. RESULTS: Thirty-three patients, median age 73 (range 54-85), were treated. Thirty patients had MDS and 3 had CMML, with 30% relapsed and 70% refractory. No dose-limiting toxicities were observed in Phase I. There were 3 (9%) deaths in ≤ 30 days. Five patients (16%) came off study for drug-related toxicity. Immune-related adverse events (IRAE) occurred in 12 (36%) patients (4 grade 3, 3 grade 2, and 5 grade1). ORR was 33% [95% confidence interval (CI), 19%-52%] with 2 complete remission (CR), 3 hematologic improvement, 5 marrow CR, and 1 partial remission. Median overall survival was 15.1 (95% CI, 8.5-25.3) months. CONCLUSIONS: Guadecitabine with atezolizumab has modest efficacy with manageable IRAEs and typical cytopenia-related safety concerns for patients with relapsed or refractory MDS and CMML.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Anciano , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Resultado del Tratamiento , Linfocitos T , Síndromes Mielodisplásicos/tratamiento farmacológico
2.
Clin Cancer Res ; 28(7): 1313-1322, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091444

RESUMEN

PURPOSE: Patients with acute myeloid leukemia (AML) unfit for, or resistant to, intensive chemotherapy are often treated with DNA methyltransferase inhibitors (DNMTi). Novel combinations may increase efficacy. In addition to demethylating CpG island gene promoter regions, DNMTis enhance PARP1 recruitment and tight binding to chromatin, preventing PARP-mediated DNA repair, downregulating homologous recombination (HR) DNA repair, and sensitizing cells to PARP inhibitor (PARPi). We previously demonstrated DNMTi and PARPi combination efficacy in AML in vitro and in vivo. Here, we report a phase I clinical trial combining the DNMTi decitabine and the PARPi talazoparib in relapsed/refractory AML. PATIENTS AND METHODS: Decitabine and talazoparib doses were escalated using a 3 + 3 design. Pharmacodynamic studies were performed on cycle 1 days 1 (pretreatment), 5 and 8 blood blasts. RESULTS: Doses were escalated in seven cohorts [25 patients, including 22 previously treated with DNMTi(s)] to a recommended phase II dose combination of decitabine 20 mg/m2 intravenously daily for 5 or 10 days and talazoparib 1 mg orally daily for 28 days, in 28-day cycles. Grade 3-5 events included fever in 19 patients and lung infections in 15, attributed to AML. Responses included complete remission with incomplete count recovery in two patients (8%) and hematologic improvement in three. Pharmacodynamic studies showed the expected DNA demethylation, increased PARP trapping in chromatin, increased γH2AX foci, and decreased HR activity in responders. γH2AX foci increased significantly with increasing talazoparib doses combined with 20 mg/m2 decitabine. CONCLUSIONS: Decitabine/talazoparib combination was well tolerated. Expected pharmacodynamic effects occurred, especially in responders.


Asunto(s)
Decitabina , Leucemia Mieloide Aguda , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , ADN , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas , Ftalazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
3.
Artículo en Inglés | MEDLINE | ID: mdl-34127444

RESUMEN

The pool of memory CD8 T cells is comprised of highly specialized subpopulations of cells with both shared and distinct functions. The ongoing study of T-cell memory is focused on how these different subpopulations arise, how the cells are maintained over the life of the host, and how the cells protect a host against reinfection. As a field we have used the convenience of a narrow range of surface markers to define and study these memory T-cell subsets. However, as we learn more about these cells, it is becoming clear that these broad definitions are insufficient to capture the complexity of the CD8 memory T-cell pool, and an updated definition of these cellular states are needed. Here, we discuss data that have recently arisen that highlight the difficulty in using surface markers to functionally characterize CD8 T-cell populations, and the possibility of using the epigenetic state of cells to more clearly define the functional capacity of CD8 memory T-cell subsets.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Linfocitos T CD8-positivos/fisiología , Subgrupos de Linfocitos T
4.
Nat Immunol ; 21(12): 1552-1562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046887

RESUMEN

T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Memoria Inmunológica , Células Progenitoras Linfoides/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores , Diferenciación Celular/inmunología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/inmunología , Ratones , Homeostasis del Telómero
5.
Trends Immunol ; 41(1): 17-28, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31810790

RESUMEN

CD8+ T cell immunological memory of past antigen exposure can confer long-lived protection against infections or tumors. The fact that CD8+ memory T cells can have features of both naïve and effector cells has forced the field to struggle with several conceptual questions about the developmental origin of the cell and, consequently, the mechanism(s) that contribute to memory development. Here, we discuss recent conceptual advances in our understanding of memory T cell development that incorporate data describing a hybrid stem and/or effector state of differentiation. We theorize that the mechanisms involved in developing these cells could be mediated, in part, through epigenetic programs. Finally, we consider the potential therapeutic implications of inducing and/or utilizing such hybrid cells clinically.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Antígenos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Epigénesis Genética/inmunología , Humanos , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología
6.
Nat Rev Immunol ; 19(11): 665-674, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31570879

RESUMEN

'T cell exhaustion' is a broad term that has been used to describe the response of T cells to chronic antigen stimulation, first in the setting of chronic viral infection but more recently in response to tumours. Understanding the features of and pathways to exhaustion has crucial implications for the success of checkpoint blockade and adoptive T cell transfer therapies. In this Viewpoint article, 18 experts in the field tell us what exhaustion means to them, ranging from complete lack of effector function to altered functionality to prevent immunopathology, with potential differences between cancer and chronic infection. Their responses highlight the dichotomy between terminally differentiated exhausted T cells that are TCF1- and the self-renewing TCF1+ population from which they derive. These TCF1+ cells are considered by some to have stem cell-like properties akin to memory T cell populations, but the developmental relationships are unclear at present. Recent studies have also highlighted an important role for the transcriptional regulator TOX in driving the epigenetic enforcement of exhaustion, but key questions remain about the potential to reverse the epigenetic programme of exhaustion and how this might affect the persistence of T cell populations.


Asunto(s)
Linfocitos T/inmunología , Animales , Factor Nuclear 1-alfa del Hepatocito/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Humanos , Infecciones/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/fisiología
7.
Sci Transl Med ; 11(498)2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243155

RESUMEN

Cancer arises from the accumulation of genetic alterations, which can lead to the production of mutant proteins not expressed by normal cells. These mutant proteins can be processed and presented on the cell surface by major histocompatibility complex molecules as neoepitopes, allowing CD8+ T cells to mount responses against them. For solid tumors, only an average 2% of neoepitopes predicted by algorithms have detectable endogenous antitumor T cell responses. This suggests that low mutation burden tumors, which include many pediatric tumors, are poorly immunogenic. Here, we report that pediatric patients with acute lymphoblastic leukemia (ALL) have tumor-associated neoepitope-specific CD8+ T cells, responding to 86% of tested neoantigens and recognizing 68% of the tested neoepitopes. These responses include a public neoantigen from the ETV6-RUNX1 fusion that is targeted in seven of nine tested patients. We characterized phenotypic and transcriptional profiles of CD8+ tumor-infiltrating lymphocytes (TILs) at the single-cell level and found a heterogeneous population that included highly functional effectors. Moreover, we observed immunodominance hierarchies among the CD8+ TILs restricted to one or two putative neoepitopes. Our results indicate that robust antitumor immune responses are induced in pediatric ALL despite their low mutation burdens and emphasize the importance of immunodominance in shaping cellular immune responses. Furthermore, these data suggest that pediatric cancers may be amenable to immunotherapies aimed at enhancing immune recognition of tumor-specific neoantigens.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Presentación de Antígeno/inmunología , Niño , Heterogeneidad Genética , Humanos , Epítopos Inmunodominantes/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Reproducibilidad de los Resultados , Transcripción Genética
8.
J Exp Med ; 211(3): 515-27, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24590765

RESUMEN

Programmed cell death 1 (PD-1) is an inhibitory immune receptor that regulates T cell function, yet the molecular events that control its expression are largely unknown. We show here that B lymphocyte-induced maturation protein 1 (Blimp-1)-deficient CD8 T cells fail to repress PD-1 during the early stages of CD8 T cell differentiation after acute infection with lymphocytic choriomeningitis virus (LCMV) strain Armstrong. Blimp-1 represses PD-1 through a feed-forward repressive circuit by regulating PD-1 directly and by repressing NFATc1 expression, an activator of PD-1 expression. Blimp-1 binding induces a repressive chromatin structure at the PD-1 locus, leading to the eviction of NFATc1 from its site. These data place Blimp-1 at an important phase of the CD8 T cell effector response and provide a molecular mechanism for its repression of PD-1.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación de la Expresión Génica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Transcripción/inmunología , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Luciferasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
9.
J Immunol ; 191(6): 3419-29, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23956425

RESUMEN

The differentiation of CD8 T cells in response to acute infection results in the acquisition of hallmark phenotypic effector functions; however, the epigenetic mechanisms that program this differentiation process on a genome-wide scale are largely unknown. In this article, we report the DNA methylomes of Ag-specific naive and day-8 effector CD8 T cells following acute lymphocytic choriomeningitis virus infection. During effector CD8 T cell differentiation, DNA methylation was remodeled such that changes in DNA methylation at gene promoter regions correlated negatively with gene expression. Importantly, differentially methylated regions were enriched at cis-elements, including enhancers active in naive T cells. Differentially methylated regions were associated with cell type-specific transcription factor binding sites, and these transcription factors clustered into modules that define networks targeted by epigenetic regulation and control of effector CD8 T cell function. Changes in the DNA methylation profile following CD8 T cell activation revealed numerous cellular processes, cis-elements, and transcription factor networks targeted by DNA methylation. Together, the results demonstrated that DNA methylation remodeling accompanies the acquisition of the CD8 T cell effector phenotype and repression of the naive cell state. Therefore, these data provide the framework for an epigenetic mechanism that is required for effector CD8 T cell differentiation and adaptive immune responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Metilación de ADN/inmunología , Epigénesis Genética/inmunología , Inmunoprecipitación , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...