Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(4): 043201, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121425

RESUMEN

Efficient helicity transfer from Poincaré fields to electrons of hydrogenic ions is revealed for the first time by four-dimensional relativistic simulations. The magnetic multipole class of Poincaré fields is chosen due to its fundamental role in light-matter spin coupling, and the calculation is demonstrated for Ne^{9+} ion irradiated by single and multimode x-ray pulses. Photoelectrons of both helicities emerge synchronously from the ion ensemble, and their directionality is controllable through the radiation mode numbers. The helicity density distributions display novel structures composed of jets, spirals, and rings, among others, that are unique to the combination of atomic and field parameters. Our approach to generate spin-polarized leptons using Poincaré fields may provide a new platform for helicity characterization based on advanced numerical capabilities.

2.
Entropy (Basel) ; 26(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38539729

RESUMEN

Genuine multipartite entanglement is crucial for quantum information and related technologies, but quantifying it has been a long-standing challenge. Most proposed measures do not meet the "genuine" requirement, making them unsuitable for many applications. In this work, we propose a journey toward addressing this issue by introducing an unexpected relation between multipartite entanglement and hypervolume of geometric simplices, leading to a tetrahedron measure of quadripartite entanglement. By comparing the entanglement ranking of two highly entangled four-qubit states, we show that the tetrahedron measure relies on the degree of permutation invariance among parties within the quantum system. We demonstrate potential future applications of our measure in the context of quantum information scrambling within many-body systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA