Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 11(10): e12253, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214493

RESUMEN

Extracellular vesicles (EV) are important mediators of cell communication and physiology. EVs are frequently investigated by transiently transfecting cells with plasmid DNA to produce EVs modified with protein(s) or nucleic acid(s) of interest. DNA-transfection reagent complexes (DTC) are approximately the same size as EVs, raising the possibility that some purification procedures may fail to separate these two species and activity arising from carryover DTC may be improperly attributed to EVs. We find that differential ultracentrifugation, a commonly employed EV isolation procedure, does not separate EVs from DTC present in the cell culture supernatant of transiently transfected cells. We demonstrate that the biological activity of an EV-directed Cre recombinase is due to contaminating plasmid DNA and not EV-mediated delivery of Cre protein. Moreover, steps commonly taken to remove plasmid DNA from EV samples, such as media exchanges and treatment with nucleases, are ineffective at avoiding this artefact. Due to the pernicious nature of plasmid DNA in these cellular assays, some reports of EV function are likely artefacts produced by contaminating DTC. EVs and DTC can be separated by density gradient ultracentrifugation, highlighting the importance of validating elimination of DTC when using transient transfection of EV-producing cells to interrogate EV function.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Artefactos , ADN/metabolismo , Vesículas Extracelulares/genética , Indicadores y Reactivos/metabolismo , Ácidos Nucleicos/metabolismo , Transfección
2.
Mol Ther ; 29(5): 1729-1743, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484965

RESUMEN

Extracellular vesicles (EVs) are an important intercellular communication system facilitating the transfer of macromolecules between cells. Delivery of exogenous cargo tethered to the EV surface or packaged inside the lumen are key strategies for generating therapeutic EVs. We identified two "scaffold" proteins, PTGFRN and BASP1, that are preferentially sorted into EVs and enable high-density surface display and luminal loading of a wide range of molecules, including cytokines, antibody fragments, RNA binding proteins, vaccine antigens, Cas9, and members of the TNF superfamily. Molecules were loaded into EVs at high density and exhibited potent in vitro activity when fused to full-length or truncated forms of PTGFRN or BASP1. Furthermore, these engineered EVs retained pharmacodynamic activity in a variety of animal models. This engineering platform provides a simple approach to functionalize EVs with topologically diverse macromolecules and represents a significant advance toward unlocking the therapeutic potential of EVs.


Asunto(s)
Vesículas Extracelulares/trasplante , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/administración & dosificación , Proteínas Represoras/metabolismo , Animales , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética
3.
Cell Rep ; 22(9): 2227-2235, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490262

RESUMEN

The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Animales , Secuencia de Bases , Hígado/metabolismo , Ratones , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...