Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2544, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137885

RESUMEN

Dispersion results from the variation of index of refraction as well as electric field confinement in sub-wavelength structures. It usually results in efficiency decrease in metasurface components leading to troublesome scattering into unwanted directions. In this letter, by dispersion engineering, we report a set of eight nanostructures whose dispersion properties are nearly identical to each other while being capable of providing 0 to 2π full-phase coverage. Our nanostructure set enables broadband and polarization-insensitive metasurface components reaching 90% relative diffraction efficiency (normalized to the power of transmitted light) from 450 nm to 700 nm in wavelength. Relative diffraction efficiency is important at a system level - in addition to diffraction efficiency (normalized to the power of incident light) - as it considers only the transmitted optical power that can affect the signal to noise ratio. We first illustrate our design principle by a chromatic dispersion-engineered metasurface grating, then show that other metasurface components such as chromatic metalenses can also be implemented by the same set of nanostructures with significantly improved relative diffraction efficiency.

2.
APL Photonics ; 6(9): 096107, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34553044

RESUMEN

Miniature handheld imaging devices and endoscopes based on coherent Raman scattering are promising for label-free in vivo optical diagnosis. Toward the development of these small-scale systems, a challenge arises from the design and fabrication of achromatic and high-end miniature optical components for both pump and Stokes laser wavelengths. Here, we report a metasurface converting a low-cost plano-convex lens into a water-immersion, nearly diffraction-limited and achromatic lens. The metasurface comprising amorphous silicon nanopillars is designed in a way that all incident rays arrive at the focus with the same phase and group delay, leading to corrections of monochromatic and chromatic aberrations of the refractive lens, respectively. Compared to the case without the metasurface, the hybrid metasurface-refractive lens has higher Strehl ratios than the plano-convex lens and a tighter depth of focus. The hybrid metasurface-refractive lens is utilized in spectroscopic stimulated Raman scattering and coherent anti-Stokes Raman scattering imaging for the differentiation of two different polymer microbeads. Subsequently, the hybrid metalens is harnessed for volumetric coherent Raman scattering imaging of bead and tissue samples. Finally, we discuss possible approaches to integrate such hybrid metalens in a miniature scanning system for label-free coherent Raman scattering endoscopes.

3.
Nano Lett ; 19(12): 8673-8682, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31726010

RESUMEN

Metalenses, planar lenses realized by placing subwavelength nanostructures that locally impart lenslike phase shifts to the incident light, are promising as a replacement for refractive optics for their ultrathin, lightweight, and tailorable characteristics, especially for applications where payload is of significant importance. However, the requirement of fabricating up to billions of subwavelength structures for centimeter-scale metalenses can constrain size-scalability and mass-production for large lenses. In this Letter, we demonstrate a centimeter-scale, all-glass metalens capable of focusing and imaging at visible wavelength, using deep-ultraviolet (DUV) projection stepper lithography. Here, we show size-scalability and potential for mass-production by fabricating 45 metalenses of 1 cm diameter on a 4 in. fused-silica wafer. The lenses show diffraction-limited focusing behavior for any homogeneously polarized incidence at visible wavelengths. The metalens' performance is quantified by the Strehl ratio and the modulation transfer function (MTF), which are then compared with commercial refractive spherical and aspherical singlet lenses of similar size and focal length. We further explore the imaging capabilities of our metalens using a color-pixel sCMOS camera and scanning-imaging techniques, demonstrating potential applications for virtual reality (VR) devices or biological imaging techniques.


Asunto(s)
Vidrio/química , Nanoestructuras/química , Impresión , Dióxido de Silicio/química , Rayos Ultravioleta , Óptica y Fotónica
4.
Nano Lett ; 18(12): 7801-7808, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30423252

RESUMEN

Existing methods of correcting for chromatic aberrations in optical systems are limited to two approaches: varying the material dispersion in refractive lenses or incorporating grating dispersion via diffractive optical elements. Recently, single-layer broadband achromatic metasurface lenses have been demonstrated but are limited to diameters on the order of 100 µm due to the large required group delays. Here, we circumvent this limitation and design a metacorrector by combining a tunable phase and artificial dispersion to correct spherical and chromatic aberrations in a large spherical plano-convex lens. The tunability results from a variation in light confinement in sub-wavelength waveguides by locally tailoring the effective refractive index. The effectiveness of this approach is further validated by designing a metacorrector, which greatly increases the bandwidth of a state-of-the-art immersion objective (composed of 14 lenses and 7 types of glasses) from violet to near-infrared wavelengths. This concept of hybrid metasurface-refractive optics combines the advantages of both technologies in terms of size, scalability, complexity, and functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...