Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316307

RESUMEN

This paper reports the first telemetric ureteral stent compatible with common placement procedure, enabling wireless sensing and detection of ureteral obstruction and resultant kidney swelling known as hydronephrosis at an early stage. This sensor-integrated "intelligent" ureteral stent is prototyped via the design and fabrication approaches that raise the practicality of the device and tested in a harvested swine kidney-ureter model ex vivo. Leveraging a polymeric double-J stent and micro-electro-mechanical systems technology, the intelligent stent is built by embedding micro pressure sensors and a radiofrequency antenna, forming a resonant circuit that enables wireless kidney pressure monitoring in an operating frequency of 40-50 MHz. The stent device is entirely packaged with Parylene-C for both biocompatibility and electrical insulation of the device in order to function in the real environment including urine, an electrically conductive liquid. A comparison between the results measured in in-vitro and ex-vivo settings show a good match in the sensitivity to applied pressure. In particular, the ex-vivo test in the kidney-ureter model pressurized with artificial urine in a cycled manner demonstrates wireless pressure tracking with a response of 1.3 kHz/mmHg, over pressures up to 37 mmHg that well covers a range of pressure increase known for chronic obstruction. This testing is enabled by the prototype placement into the ex-vivo model using the standard stenting technique and tools without noticeable functional degradation or failures, showing potential compatibility of the device with today's clinical need as a ureteral stent.

2.
ACS Biomater Sci Eng ; 9(7): 4392-4403, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276260

RESUMEN

While millions of ureteral stents are placed in patients with urinary tract issues around the world every year, hydronephrosis still poses great danger to these patients as a common complication. In the present work, an intelligent double-J ureteral stent equipped with a micro pressure sensor and antenna circuitry is investigated and prototyped toward enabling continuous wireless monitoring of kidney pressure to detect a ureteral obstruction and the resultant hydronephrosis via the indwelling stent. This electromechanically functionalized "intelligent" ureteral stent acts as a radiofrequency resonator with a pressure-sensitive resonant frequency that can be interrogated using an external antenna to track the local pressure. The prototype passes mechanical bending tests of up to 15 cm radius of curvature and shows wireless sensing with a sensitivity of 3.1 kHz/mmHg in artificial urine, which represents 25× enhancement over the preceding design, using an in vitro model with test tissue layers and a pressure range that functions within the conditions found in hydronephrotic conditions. These promising results are expected to propel intelligent ureteral stent technology into further clinical research.


Asunto(s)
Hidronefrosis , Obstrucción Ureteral , Humanos , Hidronefrosis/cirugía , Hidronefrosis/etiología , Riñón , Obstrucción Ureteral/diagnóstico , Obstrucción Ureteral/cirugía , Obstrucción Ureteral/complicaciones , Stents/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA