Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805550

RESUMEN

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Asunto(s)
Antígenos Virales , Hurones , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Neuraminidasa/inmunología , Neuraminidasa/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/enzimología , Humanos , Animales , Antígenos Virales/inmunología , Antígenos Virales/genética , Ratones , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/virología , Anticuerpos Antivirales/inmunología , Vacunas contra la Influenza/inmunología , Variación Antigénica , Proteínas Virales/inmunología , Proteínas Virales/genética , Proteínas Virales/química , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
2.
PLoS One ; 18(1): e0280825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36689429

RESUMEN

Influenza B viruses (IBV) are responsible for a considerable part of the burden caused by influenza virus infections. Since their emergence in the 1980s, the Yamagata and Victoria antigenic lineages of influenza B circulate in alternate patterns across the globe. Furthermore, their evolutionary divergence and the appearance of new IBV subclades complicates the prediction of future influenza vaccines compositions. It has been proposed that the addition of the neuraminidase (NA) antigen could potentially induce a broader protection and compensate for hemagglutinin (HA) mismatches in the current vaccines. Here we show that anti-NA and -HA sera against both Victoria and Yamagata lineages have limited inter-lineage cross-reactivity. When transferred to mice prior to infection with a panel of IBVs, anti-NA sera were as potent as anti-HA sera in conferring protection against homologous challenge and, in some cases, conferred superior protection against challenge with heterologous IBV strains.


Asunto(s)
Protección Cruzada , Sueros Inmunes , Virus de la Influenza B , Gripe Humana , Animales , Humanos , Ratones , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Gripe Humana/prevención & control , Neuraminidasa , Infecciones por Orthomyxoviridae
3.
Cell Death Dis ; 13(3): 280, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351865

RESUMEN

RIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3-/- mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3-/- mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3-/- vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3-/- mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3-/- mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3-/- mice. Likewise following IAV infection of Ripk3-/- mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3-/- mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3-/- mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Humanos , Inmunización Pasiva , Inmunoglobulina G , Ratones , Ratones Endogámicos BALB C , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Vacunación , Proteínas de la Matriz Viral
4.
PLoS One ; 17(1): e0262873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100294

RESUMEN

Influenza neuraminidase (NA) is implicated in various aspects of the virus replication cycle and therefore is an attractive target for vaccination and antiviral strategies. Here we investigated the potential for NA-specific antibodies to interfere with A(H1N1)pdm09 replication in primary human airway epithelial (HAE) cells. Mouse polyclonal anti-NA sera and a monoclonal antibody could block initial viral entry into HAE cells as well as egress from the cell surface. NA-specific polyclonal serum also reduced virus replication across multiple rounds of infection. Restriction of virus entry correlated with the ability of the serum or monoclonal antibody to mediate neuraminidase inhibition (NI). Finally, human sera with NI activity against the N1 of A(H1N1)pdm09 could decrease H6N1 virus infection of HAE cells, highlighting the potential contribution of anti-NA antibodies in the control of influenza virus infection in humans.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Células Epiteliales , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Neuraminidasa/inmunología , Mucosa Respiratoria , Proteínas Virales/inmunología , Replicación Viral/inmunología , Animales , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Ratones , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
5.
NPJ Vaccines ; 7(1): 11, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087067

RESUMEN

The neuraminidase (NA) is an abundant antigen at the surface of influenza virions. Recent studies have highlighted the immune-protective potential of NA against influenza and defined anti-NA antibodies as an independent correlate of protection. Even though NA head domain changes at a slightly slower pace than hemagglutinin (HA), NA is still subject to antigenic drift, and therefore an NA-based influenza vaccine antigen may have to be updated regularly and thus repeatedly administered. NA is a tetrameric type II membrane protein, which readily dissociates into dimers and monomers when expressed in a soluble form. By using a tetramerizing zipper, such as the tetrabrachion (TB) from Staphylothermus marinus, it is possible to stabilize soluble NA in its active tetrameric conformation, an imperative for the optimal induction of protective NA inhibitory antibodies. The impact of repetitive immunizations with TB-stabilized antigens on the immunogenicity of soluble TB-stabilized NA is unknown. We demonstrate that TB is immunogenic in mice. Interestingly, preexisting anti-TB antibodies enhance the anti-NA antibody response induced by immunization with TB-stabilized NA. This immune-enhancing effect was transferable by serum and operated independently of activating Fcγ receptors. We also demonstrate that priming with TB-stabilized NA antigens, enhances the NA inhibitory antibody responses against a heterosubtypic TB-stabilized NA. These findings have implications for the clinical development of oligomeric vaccine antigens that are stabilized by a heterologous oligomerizing domain.

6.
J Transl Med ; 17(1): 242, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31345237

RESUMEN

BACKGROUND: Current human influenza vaccines lack the adaptability to match the mutational rate of the virus and therefore require annual revisions. Because of extensive manufacturing times and the possibility that antigenic alterations occur during viral vaccine strain production, an inherent risk exists for antigenic mismatch between the new influenza vaccine and circulating viruses. Targeting more conserved antigens such as nucleoprotein (NP) could provide a more sustainable vaccination strategy by inducing long term and heterosubtypic protection against influenza. We previously demonstrated that intranodal mRNA injection can induce potent antigen-specific T-cell responses. In this study, we investigated whether intranodal administration of mRNA encoding NP can induce T-cell responses capable of protecting against a heterologous influenza virus challenge. METHODS: BALB/c mice were immunized in the inguinal lymph nodes with different vaccination regimens of mRNA encoding NP. Immune responses were compared with NP DNA vaccination via IFN-γ ELISPOT and in vivo cytotoxicity. For survival experiments, mice were prime-boost vaccinated with 17 µg NP mRNA and infected with 1LD50 of H1N1 influenza virus 8 weeks after boost. Weight was monitored and viral titers, cytokines and immune cell populations in the bronchoalveolar lavage, and IFN-γ responses in the spleen were analyzed. RESULTS: Our results demonstrate that NP mRNA induces superior systemic T-cell responses against NP compared to classical DNA vaccination. These responses were sustained for several weeks even at low vaccine doses. Upon challenge infection, vaccination with NP mRNA resulted in reduced lung viral titers and improved recovery from infection. Finally, we show that vaccination with NP mRNA affects the immune response in infected lungs by lowering immune cell infiltration while increasing the fraction of T cells, monocytes and MHC II+ alveolar macrophages within immune infiltrates. This change was associated with altered levels of both pro- and anti-inflammatory cytokines. CONCLUSIONS: These findings suggest that intranodal vaccination with NP mRNA induces cross-strain immunity against influenza, but also highlight a paradox of influenza immunity, whereby robust immune responses can provide protection, but can also transiently exacerbate symptoms during infection.


Asunto(s)
Vacunas contra la Influenza/inmunología , Nucleoproteínas/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , ARN Mensajero/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Antígenos/química , Lavado Broncoalveolar , Perros , Femenino , Humanos , Subtipo H3N2 del Virus de la Influenza A , Interferón gamma/inmunología , Interferón gamma/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Plásmidos , Linfocitos T/citología
7.
Sci Rep ; 6: 24402, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27072615

RESUMEN

There is mounting evidence that in the absence of neutralizing antibodies cross-reactive T cells provide protection against pandemic influenza viruses. Here, we compared protection and CD8+ T cell responses following challenge with H1N1 2009 pandemic and H3N2 viruses of mice that had been immunized with hemagglutinin (HA), neuraminidase (NA) and the extracellular domain of matrix protein 2 (M2e) fused to a virus-like particle (VLP). Mice were challenged a first time with a sublethal dose of H1N1 2009 pandemic virus and, four weeks later, challenged again with an H3N2 virus. Mice that had been vaccinated with HA, NA, NA + M2e-VLP and HA + NA + M2e-VLP were protected against homologous H1N1 virus challenge. Challenged NA and NA + M2e-VLP vaccinated mice mounted CD8+ T cell responses that correlated with protection against secondary H3N2 challenge. HA-vaccinated mice were fully protected against challenge with homologous H1N1 2009 virus, failed to mount cross-reactive CD8+ T cells and succumbed to the second challenge with heterologous H3N2 virus. In summary, NA- and M2e-based immunity can protect against challenge with (homologous) virus without compromising the induction of robust cross-reactive CD8+ T cell responses upon exposure to virus.


Asunto(s)
Virus de la Influenza A/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas , Femenino , Humanos , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Replicación Viral
8.
J Virol ; 89(21): 10879-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292322

RESUMEN

UNLABELLED: The interferon-induced Mx1 gene is an important part of the mammalian defense against influenza viruses. Mus musculus Mx1 inhibits influenza A virus replication and transcription by suppressing the polymerase activity of viral ribonucleoproteins (vRNPs). Here, we compared the anti-influenza virus activity of Mx1 from Mus musculus A2G with that of its ortholog from Mus spretus. We found that the antiviral activity of M. spretus Mx1 was less potent than that of M. musculus Mx1. Comparison of the M. musculus Mx1 sequence with the M. spretus Mx1 sequence revealed 25 amino acid differences, over half of which were present in the GTPase domain and 2 of which were present in loop L4. However, the in vitro GTPase activity of Mx1 from the two mouse species was similar. Replacement of one of the residues in loop L4 in M. spretus Mx1 by the corresponding residue of A2G Mx1 increased its antiviral activity. We also show that deletion of loop L4 prevented the binding of Mx1 to influenza A virus nucleoprotein and, hence, abolished the antiviral activity of mouse Mx1. These results indicate that loop L4 of mouse Mx1 is a determinant of antiviral activity. Our findings suggest that Mx proteins from different mammals use a common mechanism to inhibit influenza A viruses. IMPORTANCE: Mx proteins are evolutionarily conserved in vertebrates and inhibit a wide range of viruses. Still, the exact details of their antiviral mechanisms remain largely unknown. Functional comparison of the Mx genes from two species that diverged relatively recently in evolution can provide novel insights into these mechanisms. We show that both Mus musculus A2G Mx1 and Mus spretus Mx1 target the influenza virus nucleoprotein. We also found that loop L4 in mouse Mx1 is crucial for its antiviral activity, as was recently reported for primate MxA. This indicates that human and mouse Mx proteins, which have diverged by 75 million years of evolution, recognize and inhibit influenza A viruses by a common mechanism.


Asunto(s)
Antivirales/inmunología , Virus de la Influenza A/efectos de los fármacos , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/inmunología , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Secuencia de Bases , Citometría de Flujo , Vectores Genéticos/genética , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas de Resistencia a Mixovirus/farmacología , Nucleoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Análisis de Regresión , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
PLoS One ; 8(3): e59198, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555631

RESUMEN

BACKGROUND: Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. CONCLUSIONS/SIGNIFICANCE: Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza.


Asunto(s)
Adhesinas Bacterianas/inmunología , Anticuerpos Antivirales/sangre , Bordetella pertussis/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Proteínas Recombinantes de Fusión/inmunología , Proteínas de la Matriz Viral/inmunología , Factores de Virulencia de Bordetella/inmunología , Adhesinas Bacterianas/genética , Administración Intranasal , Animales , Bordetella pertussis/genética , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Análisis de Supervivencia , Vacunación , Vacunas Sintéticas , Proteínas de la Matriz Viral/genética , Factores de Virulencia de Bordetella/genética
10.
J Gen Virol ; 92(Pt 2): 301-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20965983

RESUMEN

The recent emergence and rapid spread of the pandemic H1N1 swine influenza virus reminded us once again of the need for a universal influenza vaccine that can elicit heterosubtypic protection. Here, we show the superior immunogenicity and immunoprotective capacity of the full-length matrix protein 2 ectodomain (M2e) peptide coupled to keyhole limpet haemocyanin (KLH) compared with the N-terminal 9 aa residues of M2e (SP1). Immunization with M2e-KLH protected mice against a lethal challenge with influenza A virus and significantly reduced weight loss and lung virus titres. In addition, passive transfer of serum raised in rabbits against M2e-KLH protected mice against a lethal influenza virus challenge, whereas serum from rabbits immunized with SP1-KLH did not. Nevertheless, immunofluorescence staining revealed that rabbit serum raised against SP1-KLH bound specifically to infected Madin-Darby canine kidney cells. We conclude that the peptide SP1 contains an immunogenic epitope that is not sufficient for immunoprotection.


Asunto(s)
Sueros Inmunes/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Proteínas de la Matriz Viral/clasificación , Proteínas de la Matriz Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Perros , Regulación Viral de la Expresión Génica , Hemocianinas , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Conejos , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...