Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cerebellum ; 23(1): 181-196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36729270

RESUMEN

Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.


Asunto(s)
Ataxia Cerebelosa , Degeneración Cerebelosa Paraneoplásica , Humanos , Ratones , Femenino , Animales , Proyectos Piloto , Cerebelo/patología , Células de Purkinje/metabolismo , Ataxia Cerebelosa/patología , Autoanticuerpos
2.
Nat Rev Immunol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040953

RESUMEN

The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.

3.
J Clin Immunol ; 43(6): 1393-1402, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156988

RESUMEN

PURPOSE: FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice. METHOD: We generated Foxp3-deficient mice and an appropriate clinical scoring system to enable direct comparison of lead therapeutic candidates rapamycin, nondepleting anti-CD4 antibody, and CTLA4-Ig. RESULTS: We found distinct immunosuppressive profiles induced by each treatment, leading to unique protective combinations over distinct clinical manifestations. CTLA4-Ig provided superior breadth of protective outcomes, including highly efficient protection during the transplantation process. CONCLUSION: These results highlight the mechanistic diversity of pathogenic pathways initiated by regulatory T cell loss and suggest CTLA4-Ig as a potentially superior therapeutic option for FOXP3-deficient patients.


Asunto(s)
Abatacept , Deterioro Clínico , Enfermedades del Sistema Inmune , Animales , Humanos , Ratones , Abatacept/uso terapéutico , Antígeno CTLA-4 , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Enfermedades del Sistema Inmune/terapia , Sirolimus/farmacología , Sirolimus/uso terapéutico , Linfocitos T Reguladores
4.
EMBO Mol Med ; 15(5): e16805, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975362

RESUMEN

Cognitive decline is a common pathological outcome during aging, with an ill-defined molecular and cellular basis. In recent years, the concept of inflammaging, defined as a low-grade inflammation increasing with age, has emerged. Infiltrating T cells accumulate in the brain with age and may contribute to the amplification of inflammatory cascades and disruptions to the neurogenic niche observed with age. Recently, a small resident population of regulatory T cells has been identified in the brain, and the capacity of IL2-mediated expansion of this population to counter neuroinflammatory disease has been demonstrated. Here, we test a brain-specific IL2 delivery system for the prevention of neurological decline in aging mice. We identify the molecular hallmarks of aging in the brain glial compartments and identify partial restoration of this signature through IL2 treatment. At a behavioral level, brain IL2 delivery prevented the age-induced defect in spatial learning, without improving the general decline in motor skill or arousal. These results identify immune modulation as a potential path to preserving cognitive function for healthy aging.


Asunto(s)
Interleucina-2 , Linfocitos T Reguladores , Ratones , Animales , Interleucina-2/metabolismo , Envejecimiento , Encéfalo/metabolismo , Cognición
5.
Nat Immunol ; 24(1): 12-13, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596892

Asunto(s)
Encéfalo , Linfocitos T
6.
Immunol Cell Biol ; 101(2): 112-129, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479949

RESUMEN

FOXP3-expressing regulatory T cells (Treg ) are indispensable for immune homeostasis and tolerance, and in addition tissue-resident Treg have been found to perform noncanonical, tissue-specific functions. For optimal tolerogenic function during inflammatory disease, Treg are equipped with mechanisms that assure lineage stability. Treg lineage stability is closely linked to the installation and maintenance of a lineage-specific epigenetic landscape, specifically a Treg -specific DNA demethylation pattern. At the same time, for local and directed immune regulation Treg must possess a level of functional plasticity that requires them to partially acquire T helper cell (TH ) transcriptional programs-then referred to as TH -like Treg . Unleashing TH programs in Treg , however, is not without risk and may threaten the epigenetic stability of Treg with consequently pathogenic ex-Treg contributing to (auto-) inflammatory conditions. Here, we review how the Treg -stabilizing epigenetic landscape is installed and maintained, and further discuss the development, necessity and lineage instability risks of TH 1-, TH 2-, TH 17-like Treg and follicular Treg .


Asunto(s)
Tolerancia Inmunológica , Linfocitos T Reguladores , Factores de Transcripción Forkhead
7.
Immunol Lett ; 248: 26-30, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35697195

RESUMEN

Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4+Foxp3+ Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69+, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.


Asunto(s)
Encéfalo , Linfocitos T Reguladores , Autoinmunidad , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Humanos , Activación de Linfocitos
8.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618831

RESUMEN

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Asunto(s)
Astrocitos , Productos Biológicos , Animales , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Ratones , Enfermedades Neuroinflamatorias , Linfocitos T Reguladores
9.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35352880

RESUMEN

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Anticuerpos de Dominio Único , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/inmunología , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/uso terapéutico , Ratones , Ratones Transgénicos
10.
Cancer Gene Ther ; 29(7): 984-992, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34754076

RESUMEN

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8+ T cells, and upregulated the expression of CD8+ effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Interleucina-12 , Neoplasias , Animales , Anticuerpos Monoclonales/administración & dosificación , Línea Celular Tumoral , ADN , Terapia Genética , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia , Interleucina-12/genética , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
11.
Eur J Pharmacol ; 890: 173636, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053380

RESUMEN

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1ß, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 µg/day, i.art.), Hp given orally (20 µg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 µg/knee) or p.o. (20 µg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1ß, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Hemoglobinas/farmacología , Dolor Nociceptivo/prevención & control , Fragmentos de Péptidos/farmacología , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Conducta Animal/efectos de los fármacos , Citocinas/metabolismo , Edema/tratamiento farmacológico , Marcha/efectos de los fármacos , Hemoglobinas/administración & dosificación , Inflamación/tratamiento farmacológico , Inyecciones Intraarticulares , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Leucocitos/efectos de los fármacos , Masculino , Fragmentos de Péptidos/administración & dosificación , Ratas Sprague-Dawley , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Sustancia P/metabolismo
12.
IBRO Rep ; 9: 218-223, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32984640

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by intracellular inclusions named Lewy bodies (LB), and alpha-synuclein (asyn) is the major component of these protein aggregates. The precise physiological and pathological roles of asyn are not fully understood. Nevertheless, asyn present in LB is ubiquitinated but fails to reach the 26S proteasome. The mutation A30 P is related to an aggressive and early-onset form of PD. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase, and it interacts and ubiquitinates the asyn in atypical chains (lysine K6, K27, K29, and K33). Methods: Here, we investigated the role of TRAF6 interaction with asyn and the involvement of nuclear factor κB (NF-κB), a key transcription factor in pro-inflammatory signaling pathway activation. RESULTS AND CONCLUSION: We demonstrated that TRAF6 binds to both WT and the mutant form A30 P asyn in an SH-SY5Y cell model. Additionally, the interaction between TRAF6 and WT asyn induced an increase in the activation of NF-κB, leading to changes in TNF, IL-1ß and IL-10 levels and culminating in reduced cell viability. Interestingly, the activation of NF-κB and gene regulation were not found in A30 P asyn. These data point to a novel role of TRAF6 in the pathophysiology of PD.

13.
Front Immunol ; 11: 991, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655545

RESUMEN

Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.


Asunto(s)
Antígenos de Neoplasias/inmunología , Autoanticuerpos/inmunología , Autoinmunidad , Cerebelo/inmunología , Neoplasias/inmunología , Degeneración Cerebelosa Paraneoplásica/inmunología , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Inmunoterapia/efectos adversos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Degeneración Cerebelosa Paraneoplásica/metabolismo , Degeneración Cerebelosa Paraneoplásica/patología , Células de Purkinje/inmunología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Factores de Riesgo , Linfocitos T/inmunología , Linfocitos T/metabolismo
14.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32702313

RESUMEN

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Asunto(s)
Encéfalo/citología , Linfocitos T CD4-Positivos/metabolismo , Feto/citología , Microglía/citología , Microglía/metabolismo , Sinapsis/metabolismo , Adulto , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Escala de Evaluación de la Conducta , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Niño , Femenino , Feto/embriología , Humanos , Lectinas Tipo C/metabolismo , Pulmón/citología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neurogénesis/genética , Parabiosis , Células Piramidales/metabolismo , Células Piramidales/fisiología , Análisis de la Célula Individual , Bazo/citología , Bazo/metabolismo , Sinapsis/inmunología , Transcriptoma
15.
Eur J Pharmacol, v. 890, 173636, jan. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3856

RESUMEN

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1β, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 μg/day, i.art.), Hp given orally (20 μg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 μg/knee) or p.o. (20 μg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1β, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP

16.
Nat Commun ; 10(1): 5779, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852955

RESUMEN

Neuroinflammation is often associated with blood-brain-barrier dysfunction, which contributes to neurological tissue damage. Here, we reveal the pathophysiology of Susac syndrome (SuS), an enigmatic neuroinflammatory disease with central nervous system (CNS) endotheliopathy. By investigating immune cells from the blood, cerebrospinal fluid, and CNS of SuS patients, we demonstrate oligoclonal expansion of terminally differentiated activated cytotoxic CD8+ T cells (CTLs). Neuropathological data derived from both SuS patients and a newly-developed transgenic mouse model recapitulating the disease indicate that CTLs adhere to CNS microvessels in distinct areas and polarize granzyme B, which most likely results in the observed endothelial cell injury and microhemorrhages. Blocking T-cell adhesion by anti-α4 integrin-intervention ameliorates the disease in the preclinical model. Similarly, disease severity decreases in four SuS patients treated with natalizumab along with other therapy. Our study identifies CD8+ T-cell-mediated endotheliopathy as a key disease mechanism in SuS and highlights therapeutic opportunities.


Asunto(s)
Sistema Nervioso Central/irrigación sanguínea , Endotelio Vascular/patología , Microvasos/patología , Síndrome de Susac/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/inmunología , Femenino , Humanos , Integrina alfa4/antagonistas & inhibidores , Integrina alfa4/metabolismo , Masculino , Ratones Transgénicos , Microvasos/efectos de los fármacos , Microvasos/inmunología , Persona de Mediana Edad , Natalizumab/farmacología , Natalizumab/uso terapéutico , Síndrome de Susac/sangre , Síndrome de Susac/tratamiento farmacológico , Adulto Joven
17.
JCI Insight ; 4(7)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944244

RESUMEN

Paraneoplastic neurological disorders result from an autoimmune response against neural self-antigens that are ectopically expressed in neoplastic cells. In paraneoplastic disorders associated to autoantibodies against intracellular proteins, such as paraneoplastic cerebellar degeneration (PCD), current data point to a major role of cell-mediated immunity. In an animal model, in which a neo-self-antigen was expressed in both Purkinje neurons and implanted breast tumor cells, immune checkpoint blockade led to complete tumor control at the expense of cerebellum infiltration by T cells and Purkinje neuron loss, thereby mimicking PCD. Here, we identify 2 potential therapeutic targets expressed by cerebellum-infiltrating T cells in this model, namely α4 integrin and IFN-γ. Mice with PCD were treated with anti-α4 integrin antibodies or neutralizing anti-IFN-γ antibodies at the onset of neurological signs. Although blocking α4 integrin had little or no impact on disease development, treatment using the anti-IFN-γ antibody led to almost complete protection from PCD. These findings strongly suggest that the production of IFN-γ by cerebellum-invading T cells plays a major role in Purkinje neuron death. Our successful preclinical use of neutralizing anti-IFN-γ antibody for the treatment of PCD offers a potentially new therapeutic opportunity for cancer patients at the onset of paraneoplastic neurological disorders.


Asunto(s)
Interferón gamma/antagonistas & inhibidores , Neoplasias Mamarias Experimentales/complicaciones , Degeneración Cerebelosa Paraneoplásica/tratamiento farmacológico , Células de Purkinje/patología , Linfocitos T/efectos de los fármacos , Animales , Antígenos de Neoplasias/inmunología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Línea Celular Tumoral/trasplante , Femenino , Integrina alfa4/antagonistas & inhibidores , Integrina alfa4/inmunología , Integrina alfa4/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Ratones , Ratones Noqueados , Degeneración Cerebelosa Paraneoplásica/inmunología , Degeneración Cerebelosa Paraneoplásica/patología , Células de Purkinje/inmunología , Células de Purkinje/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
18.
Nat Rev Neurol ; 13(12): 755-763, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29104289

RESUMEN

Cancer treatment strategies based on immune stimulation have recently entered the clinical arena, with unprecedented success. Immune checkpoint inhibitors (ICIs) work by indiscriminately promoting immune responses, which target tumour-associated antigens or tumour-specific mutations. However, the augmented immune response, most notably the T cell response, can cause either direct neurotoxicity or, more commonly, indirect neurotoxic effects through systemic or local inflammatory mechanisms or autoimmune mechanisms. Consequently, patients treated with ICIs are susceptible to CNS disease, including paraneoplastic neurological syndromes, encephalitis, multiple sclerosis and hypophysitis. In this Opinion article, we introduce the mechanisms of action of ICIs and review their adverse effects on the CNS. We highlight the importance of early detection of these neurotoxic effects, which should be distinguished from brain metastasis, and the need for early detection of neurotoxicity. It is crucial that physicians are well informed of these neurological adverse effects, given the anticipated increase in the use of immunotherapies to treat cancer.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Enfermedades Autoinmunes del Sistema Nervioso , Hipofisitis , Inmunoterapia/efectos adversos , Inflamación , Neoplasias/tratamiento farmacológico , Receptores de Superficie Celular , Enfermedades Autoinmunes del Sistema Nervioso/inducido químicamente , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Humanos , Hipofisitis/inducido químicamente , Hipofisitis/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Neoplasias/inmunología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/inmunología
19.
Sci Rep ; 7(1): 4894, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687727

RESUMEN

Ouabain (OUA) is a cardiac glycoside that binds to Na+,K+-ATPase (NKA), a conserved membrane protein that controls cell transmembrane ionic concentrations and requires ATP hydrolysis. At nM concentrations, OUA activates signaling pathways that are not related to its typical inhibitory effect on the NKA pump. Activation of these signaling pathways protects against some types of injury of the kidneys and central nervous system. There are 4 isoforms of the alpha subunit of NKA, which are differentially distributed across tissues and may have different physiological roles. Glial cells are important regulators of injury and inflammation in the brain and express the α1 and α2 NKA isoforms. This study investigated the role of α2 NKA in OUA modulation of the neuroinflammatory response induced by lipopolysaccharide (LPS) in mouse primary glial cell cultures. LPS treatment increased lactate dehydrogenase release, while OUA did not decrease cell viability and blocked LPS-induced NF-κB activation. Silencing α2 NKA prevented ERK and NF-κB activation by LPS. α2 NKA also regulates TNF-α and IL-1ß levels. The data reported here indicate a significant role of α2 NKA in regulating central LPS effects, with implications in the associated neuroinflammatory processes.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Inflamación/patología , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Fármacos Neuroprotectores/metabolismo , Ouabaína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Células Cultivadas , Silenciador del Gen , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Ratones , Modelos Biológicos , ATPasa Intercambiadora de Sodio-Potasio/genética
20.
Oncoimmunology ; 6(2): e1260212, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344867

RESUMEN

Paraneoplastic neurological disorders (PNDs) are rare human autoimmune diseases that mostly affect the central nervous system (CNS). They are triggered by an efficient immune response against a neural self-antigen that is ectopically expressed in neoplastic tumors. Due to this shared antigenic expression, the immune system reacts not only to tumor cells but also to neural cells resulting in neurological damage. Growing data point to a major role of cell-mediated immunity in PNDs associated to autoantibodies against intracellular proteins. However, its precise contribution in the pathogenesis remains unclear. In this context, our study aimed at investigating the impact of anti-tumor cellular immune responses in the development of PND. To this end, we developed an animal model mimicking PND. We used a tumor cell line expressing the hemagglutinin (HA) of influenza virus to induce an anti-tumor response in CamK-HA mice, which express HA in CNS neurons. To promote and track the T cell response against the HA antigen, naïve HA-specific CD8+ and/or CD4+ T cells, originating from TCR-transgenic animals, were transferred into these mice. We demonstrate that HA-expressing tumors, but not control tumors, induce in vivo activation, proliferation and differentiation of naïve HA-specific CD4+ and CD8+ T cells into effector cells. Moreover, both T cell subsets were needed to control tumor growth and induce CNS inflammation in CamK-HA mice. Thus, this new mouse model provides further insight into the cellular mechanisms whereby a potent anti-tumor immunity triggers a cancer-associated autoimmune disease, and may therefore help to develop new therapeutic strategies against PND.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...