Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Neurosci ; 17: 1186312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425011

RESUMEN

Background: Meningiomas are one of the most common intracranial tumors, and the current understanding of meningioma pathology is still incomplete. Inflammatory factors play an important role in the pathophysiology of meningioma, but the causal relationship between inflammatory factors and meningioma is still unclear. Method: Mendelian randomization (MR) is an effective statistical method for reducing bias based on whole genome sequencing data. It's a simple but powerful framework, that uses genetics to study aspects of human biology. Modern methods of MR make the process more robust by exploiting the many genetic variants that may exist for a given hypothesis. In this paper, MR is applied to understand the causal relationship between exposure and disease outcome. Results: This research presents a comprehensive MR study to study the association of genetic inflammatory cytokines with meningioma. Based on the results of our MR analysis, which examines 41 cytokines in the largest GWAS datasets available, we were able to draw the relatively more reliable conclusion that elevated levels of circulating TNF-ß, CXCL1, and lower levels of IL-9 were suggestive associated with a higher risk of meningioma. Moreover, Meningiomas could cause lower levels of interleukin-16 and higher levels of CXCL10 in the blood. Conclusion: These findings suggest that TNF-ß, CXCL1, and IL-9 play an important role in the development of meningiomas. Meningiomas also affect the expression of cytokines such as IL-16 and CXCL10. Further studies are needed to determine whether these biomarkers can be used to prevent or treat meningiomas.

3.
Biotechniques ; 74(5): 203-209, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37232298

RESUMEN

High-quality RNA isolation from recalcitrant adipose tissue with high lipid content and low cell numbers is difficult. Many studies have made efforts to optimize methods for isolating RNA from adipose tissue through combinations of column-based kits and phenol-chloroform methods, or through in-house protocols. However, the considerable complexity of these protocols and the various kits/materials required hamper their wide use. Herein, we describe an optimized protocol based on TRIzol reagent, which is the most accessible ready-to-use reagent for nucleic acid and/or protein isolation in laboratories. This article provides a step-by-step protocol yielding sufficient and qualified RNA from lipid-rich specimens for downstream applications.


Asunto(s)
Fenoles , ARN , ARN/genética , Tejido Adiposo , Lípidos
4.
Adv Mater ; 35(28): e2301879, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022759

RESUMEN

Severe nonradiative recombination originating from interfacial defects together with the pervasive energy level mismatch at the interface remarkably limits the performance of CsPbI3 perovskite solar cells (PSCs). These issues need to be addressed urgently for high-performance cells and their applications. Herein, an interfacial gradient heterostructure based on low-temperature post-treatment of quaternary bromide salts for efficient CsPbI3 PSCs with an impressive efficiency of 21.31% and an extraordinary fill factor of 0.854 is demonstrated. Further investigation reveals that Br- ions diffuse into the perovskite films to heal undercoordinated Pb2+ and inhibit Pb cluster formation, thus suppressing nonradiative recombination in CsPbI3 . Meanwhile, a more compatible interfacial energy level alignment resulting from Br- gradient distribution and organic cations surface termination is also achieved, hence promoting charge separation and collection. Consequently, the printed small-size cell with an efficiency of 20.28% and 12 cm2 printed CsPbI3 minimodules with a record efficiency of 16.60% are also demonstrated. Moreover, the unencapsulated CsPbI3 films and devices exhibit superior stability.


Asunto(s)
Compuestos de Calcio , Plomo , Frío , Óxidos
5.
Adv Mater ; 34(45): e2205028, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36096152

RESUMEN

All-inorganic CsPbI3 perovskite has emerged as an important photovoltaic material due to its high thermal stability and suitable bandgap for tandem devices. Currently, the cell performance of CsPbI3 solar cells is mainly subject to a large open-circuit voltage (VOC ) deficit. Herein, a multifunctional room-temperature molten salt, dimethylamine acetate (DMAAc) is demonstrated, which not only directly acts as a solvent for precursor solutions, but also regulates the phase conversion process of the CsPbI3 film for high-efficiency photovoltaics. DMAAc can stabilize the DMAPbI3 structure and eliminate the Cs4 PbI6 intermediate phase, which is easily spatially segregated. Meanwhile, a new homogeneous intermediate phase DMAPb(I,Ac)3 is formed, which finally affords high-quality CsPbI3 films. With this approach, the charge capture activity of defects in the CsPbI3 film is significantly suppressed. Consequently, a VOC of 1.25 V and >21% power conversion efficiency are achieved, which is the record highest reported thus far. This intermediate phase-regulation strategy is believed to be applicable to other perovskite material systems.

6.
Angew Chem Int Ed Engl ; 61(23): e202201300, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35243747

RESUMEN

Low-dimensional (LD) perovskites can effectively passivate and stabilize 3D perovskites for high-performance perovskite solar cells (PSCs). Regards CsPbI3 -based PSCs, the influence of high-temperature annealing on the LD perovskite passivation effect has to be taken into account due to fact the black-phase CsPbI3 crystallization requires high-temperature treatment, however, which has been rarely concerned so far. Here, the thermal stability of LD perovskites based on three hydrophobic organic ammonium salts and their passivation effect toward CsPbI3 and the whole device performance, have been investigated. It is found that, phenyltrimethylammonium iodide (PTAI) and its corresponding LD perovskites exhibit excellent thermal stability. Further investigation reveals that PTAI-based LD perovskites are mainly distributed at grain boundaries, which not only enhances the phase stability of CsPbI3 but also effectively suppresses non-radiative recombination. As a consequence, the champion PSC device based on CsPbI3 exhibits a record efficiency of 21.0 % with high stability.

7.
ACS Appl Mater Interfaces ; 14(1): 1526-1536, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968040

RESUMEN

It is well-known that two-dimensional Ruddlesden-Popper (2DRP) perovskite has higher stability than three-dimensional counterparts. However, fundamental issues still exist in the vertical orientation and phase composition as well as phase distribution. Here, obvious control of the film quality of 2DRP PEA2MA4Pb5I16 (n = 5) perovskite is demonstrated via a thermal-pressed (TP) effect. The crystallinity, morphology, phase composition, and optoelectronic features unequivocally illustrate that the TP effect achieves a larger gain size, a smoother surface, an effectively vertical orientation, a relatively pure phase with a large n value, a gradient distribution of quantum wells, and enhanced interlayer interaction. These film and interface features lead to markedly enhanced charge transport/extraction and lower trap density. Accordingly, the TP-based perovskite film device delivers a power conversion efficiency of 15.14%, far higher than that of the control film device (11.10%) because of significant improvements in open-circuit voltage and short-circuit current. More importantly, it also presents excellent hydrophobicity, illumination stability, and environmental stability. In addition, the 2D perovskite self-powered photodetector also exhibits high responsivity (0.25 A W-1) and specific detectivity (1.4 × 1012 Jones) at zero bias.

8.
Front Neurosci ; 16: 1060012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685223

RESUMEN

Background: High-grade glioma (HGG) is a malignant brain tumor that is common and aggressive in children and adults. In the current medical paradigm, surgery and radiotherapy are the standard treatments for HGG patients. Despite this, the overall prognosis is still very bleak. Studies have shown that platelet-derived growth factor receptor α (PDGFRA) is an essential target to treat tumors and inhibiting the activity of PDGFRA can improve the prognosis of HGG. Thus, PDGFRA inhibitors are critical to developing drugs and cancer treatment. Objective: The purpose of this study was to screen lead compounds and candidate drugs with potential inhibitors against platelet-derived growth factor receptor α (PDGFRA) from the drug library (ZINC database) in order to improve the prognosis of patients with high-grade glioma (HGG). Materials and methods: In our study, we selected Imatinib as the reference drug. A series of computer-aided technologies, such as Discovery Studio 2019 and Schrodinger, were used to screen and assess potential inhibitors of PDGFRA. The first step was to calculate the LibDock scores and then analyze the pharmacological and toxicological properties. Following this, we docked the small molecules selected in the previous steps with PDGFRA to study their docking mechanism and affinity. In addition, molecular dynamics simulation was used to determine whether the ligand-PDGFRA complex was stable in nature. Results: Two novel natural compounds 1 and 2 (ZINC000008829785 and ZINC000013377891) from the ZINC database were found binding to PDGFRA with more favorable interaction energy. Also, they were predicted with less Ames mutagenicity, rodent carcinogenicity, non-developmental toxic potential, and tolerant with cytochrome P450 2D6 (CYP2D6). The dynamic simulation analysis demonstrated that ZINC000008829785-PDGFRA and ZINC000013377891-PDGFRA dimer complex had more favorable potential energy compared with Imatinib, and they can exist in natural environments stably. Conclusion: ZINC000008829785 and ZINC000013377891 might provide a solid foundation for drugs that inhibit PDGFRA in HGG. In addition to being safe drug candidates, these compounds had important implications for improving drugs targeting PDGFRA.

9.
Angew Chem Int Ed Engl ; 60(24): 13436-13443, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33792125

RESUMEN

Besides widely used surface passivation, engineering the film crystallization is an important and more fundamental route to improve the performance of all-inorganic perovskite solar cells. Herein, we have developed a urea-ammonium thiocyanate (UAT) molten salt modification strategy to fully release and exploit coordination activities of SCN- to deposit high-quality CsPbI3 film for efficient and stable all-inorganic solar cells. The UAT is derived by the hydrogen bond interactions between urea and NH4 + from NH4 SCN. With the UAT, the crystal quality of the CsPbI3 film has been significantly improved and a long single-exponential charge recombination lifetime of over 30 ns has been achieved. With these benefits, the cell efficiency has been promoted to over 20 % (steady-state efficiency of 19.2 %) with excellent operational stability over 1000 h. These results demonstrate a promising development route of the CsPbI3 related photoelectric devices.

10.
ACS Appl Mater Interfaces ; 13(8): 9771-9780, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615775

RESUMEN

In perovskite solar cells, the halide vacancy defects on the perovskite film surface/interface will instigate charge recombination, leading to a decrease in cell performance. In this study, cadmium sulfide (CdS) has been introduced into the precursor solution to reduce the halide vacancy defects and improve the cell performance. The highest efficiency of the device reaches 21.62%. Density functional theory calculation reveals that the incorporated Cd2+ ions can partially replace Pb2+ ions, thus forming a strong Cd-I bond and effectively reducing iodide vacancy defects (VI); at the same time, the loss of the charge recombination is significantly reduced because VI is filled by S2- ions. Besides, the substitution of Cd2+ for Pb2+ could increase the generation of PbI2, which can further passivate the grain boundary. Therefore, the stability of the cells, together with the efficiency of the power conversion efficiencies (PCEs), is also improved, maintaining 87.5% of its initial PCEs after being irradiated over 410 h. This work provides a very effective strategy to passivate the surface/interface defects of perovskite films for more efficient and stable optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 12(24): 27258-27267, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32441500

RESUMEN

The stability issue hinders the commercialization of the perovskite solar cells (PSCs), which is widely recognized. The efficiency generally decreases over time during the working condition. Here, we report an efficiency enhancement phenomenon of PSCs in the stability test at the maximum power point, which is speculated to be related to the electric-field-induced ion migration. The defect density and efficiency-related parameters were traced in situ by admittance spectroscopy and transient photovoltage when the cell works under bias voltage. The performance enhancement was revealed to be attributed to the reduction of the cell defects owing to ion migration. An efficiency of 22.3% can be achieved after the bias voltage was kept for 8 h. These findings suggest that ion migration is a double-edged sword that affects the electrical stability of PSCs, which presents a potential approach to improve the device's stability by appropriately controlling the defect states.

12.
Nanoscale ; 8(23): 11870-4, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27231820

RESUMEN

The photocatalytic reduction of CO2 over Ag/TiO2 composites prepared with a simple silver mirror reaction method was investigated under UV-visible irradiation in both gas-phase (CO2 + water vapor) and aqueous solution (CO2-saturated NaHCO3 solution) systems. The as-prepared Ag/TiO2 nanocomposite exhibits efficient photocatalytic activity due to the surface plasmonic resonance and electron sink effect of the Ag component, which was found to be closely related to the size and loading amount of Ag. The rapid silver method is effective at curbing the size of Ag, so photocatalytic activity can be improved. Diverse organic chemical products were detected, including mainly methane and methanol as well as a small amount of C2 and C3 species such as acetaldehyde and acetone. Possible photocatalytic mechanisms were proposed. This artificial photosynthesis process may give a prosperous route to the removal of CO2 while simultaneously converting CO2 to valuable fuels based on highly efficient photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...