Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(5): e18065, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116696

RESUMEN

Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.

2.
J Chem Inf Model ; 63(15): 4948-4959, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37486750

RESUMEN

Traditional Chinese medicine (TCM) not only maintains the health of Asian people but also provides a great resource of active natural products for modern drug development. Herein, we developed a Database of Constituents Absorbed into the Blood and Metabolites of TCM (DCABM-TCM), the first database systematically collecting blood constituents of TCM prescriptions and herbs, including prototypes and metabolites experimentally detected in the blood, together with the corresponding detailed detection conditions through manual literature mining. The DCABM-TCM has collected 1816 blood constituents with chemical structures of 192 prescriptions and 194 herbs and integrated their related annotations, including physicochemical, absorption, distribution, metabolism, excretion, and toxicity properties, and associated targets, pathways, and diseases. Furthermore, the DCABM-TCM supported two blood constituent-based analysis functions, the network pharmacology analysis for TCM molecular mechanism elucidation, and the target/pathway/disease-based screening of candidate blood constituents, herbs, or prescriptions for TCM-based drug discovery. The DCABM-TCM is freely accessible at http://bionet.ncpsb.org.cn/dcabm-tcm/. The DCABM-TCM will contribute to the elucidation of effective constituents and molecular mechanism of TCMs and the discovery of TCM-derived drug-like compounds that are both bioactive and bioavailable.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Bases de Datos Factuales
3.
Cell Mol Biol Lett ; 28(1): 42, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202752

RESUMEN

BACKGROUND: Renal ischemia-reperfusion injury (IRI) is one reason for renal transplantation failure. Recent studies have shown that mitochondrial dynamics is closely related to IRI, and that inhibition or reversal of mitochondrial division protects organs against IRI. Optic atrophy protein 1 (OPA1), an important factor in mitochondrial fusion, has been shown to be upregulated by sodium-glucose cotransporter 2 inhibitor (SGLT2i). Also, the antiinflammatory effects of SGLT2i have been demonstrated in renal cells. Thus, we hypothesized that empagliflozin could prevent IRI through inhibiting mitochondrial division and reducing inflammation. METHODS: Using hematoxylin-eosin staining, enzyme linked immunosorbent assay (ELISA), flow cytometry, immunofluorescent staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, real-time PCR, RNA-sequencing, and western blot, we analyzed renal tubular tissue from in vivo and in vitro experiments. RESULTS: Through animal experiments and sequencing analysis, we first confirmed the protection against IRI and the regulation of mitochondrial dynamics-related factors and inflammatory factors by empagliflozin pretreatment. Then, through hypoxia/reoxygenation (H/R) cellular experiments, we confirmed that empagliflozin could inhibit mitochondrial shortening and division and upregulate OPA1 in human renal tubular epithelial cell line (HK-2) cells. Subsequently, we knocked down OPA1, and mitochondrial division and shortening were observed, which could be alleviated by empagliflozin treatment. Combined with the previous results, we concluded that OPA1 downregulation leads to mitochondrial division and shortening, and empagliflozin can alleviate the condition by upregulating OPA1. We further explored the pathway through which empagliflozin functions. Related studies have shown the activation of AMPK pathway by empagliflozin and the close correlation between the AMPK pathway and OPA1. In our study, we blocked the AMPK pathway, and OPA1 upregulation by empagliflozin was not observed, thus demonstrating the dependence of empagliflozin on the AMPK pathway. CONCLUSION: The results indicated that empagliflozin could prevent or alleviate renal IRI through antiinflammatory effects and the AMPK-OPA1 pathway. Ischemia-reperfusion injury is an inevitable challenge in organ transplantation. It is necessary to develop a new therapeutic strategy for IRI prevention in addition to refining the transplantation process. In this study, we confirmed the preventive and protective effects of empagliflozin in renal ischemia-reperfusion injury. Based on these findings, empagliflozin is promising to be a preventive agent for renal ischemia-reperfusion injury and can be applied for preemptive administration in kidney transplantation.


Asunto(s)
Dinámicas Mitocondriales , Daño por Reperfusión , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Riñón , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Apoptosis , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología
4.
Pathol Oncol Res ; 29: 1610956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006438

RESUMEN

The growing evidence implies that tumor cells need to increase NAD+ levels by upregulating NAD+ biosynthesis to satisfy their growth demand. NAD+ biosynthesis metabolism is implicated in tumor progression. Breast cancer (BC) is the most common malignant malignancy in the world. Nevertheless, the prognostic significance of NAD+ biosynthesis and its relationship with the tumor immune microenvironment in breast cancer still need further investigation. In this study, we obtained the mRNA expression data and clinical information of BC samples from public databases and calculated the level of NAD+ biosynthesis activity by single-sample gene set enrichment analysis (ssGSEA). We then explored the relationship between the NAD+ biosynthesis score, infiltrating immune cells, prognosis significance, immunogenicity and immune checkpoint molecules. The results demonstrated that patients with high NAD+ biosynthetic score displayed poor prognosis, high immune infiltration, high immunogenicity, elevated PD-L1 expression, and might more benefit from immunotherapy. Taken together, our studies not only deepened the understanding of NAD+ biosynthesis metabolism of breast cancer but also provided new insights into personalized treatment strategies and immunological therapies to improve the outcomes of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , NAD , Pronóstico , Bases de Datos Factuales , Proteínas de Punto de Control Inmunitario , Microambiente Tumoral
5.
Signal Transduct Target Ther ; 8(1): 142, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024477

RESUMEN

Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Dysregulation of this process leads to multiple diseases, including osteoporosis. However, the underlying molecular mechanisms are not fully understood. Here, we show that the global and conditional osteoblast knockout of a deubiquitinase Otub1 result in low bone mass and poor bone strength due to defects in osteogenic differentiation and mineralization. Mechanistically, the stability of FGFR2, a crucial regulator of osteogenesis, is maintained by OTUB1. OTUB1 attenuates the E3 ligase SMURF1-mediated FGFR2 ubiquitination by inhibiting SMURF1's E2 binding. In the absence of OTUB1, FGFR2 is ubiquitinated excessively by SMURF1, followed by lysosomal degradation. Consistently, adeno-associated virus serotype 9 (AAV9)-delivered FGFR2 in knee joints rescued the bone mass loss in osteoblast-specific Otub1-deleted mice. Moreover, Otub1 mRNA level was significantly downregulated in bones from osteoporotic mice, and restoring OTUB1 levels through an AAV9-delivered system in ovariectomy-induced osteoporotic mice attenuated osteopenia. Taken together, our results suggest that OTUB1 positively regulates osteogenic differentiation and mineralization in bone homeostasis by controlling FGFR2 stability, which provides an optical therapeutic strategy to alleviate osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Animales , Femenino , Ratones , Huesos/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119399, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36402207

RESUMEN

Tertiary lymphoid organs (TLOs) are ectopic aggregates of immune cells. As accumulating studies demonstrate TLOs as a predictor of better prognosis in certain cancers, targeting TLO formation, which is tightly regulated by the lymphoid tissue organizer cells (LTOs), has become intriguing in cancer treatment. However, the clinical outcome of these attempts is limited, because the approaches for activating tumor adjacent LTO is lack and little is known about what type of self-cell can be used as LTO to initiate TLO formation. Here we demonstrate that co-stimulation with membrane-bound ligand LTα1ß2 and soluble TNF-α could induced an LTO-like activity in murine neonatal dermal fibroblast, featured by high expression of cell migration-associated chemokines and adhesion molecules that resemble typical LTO gene signature. Furthermore, the LTO-phenotypic dermal fibroblast could enhance the attachment and survival of T and B cell and proliferation of T cell. These findings suggest dermal fibroblast as a promising target for TLO induction to improve cancer immunotherapy.


Asunto(s)
Tejido Linfoide , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/genética , Tejido Linfoide/metabolismo , Linfocitos/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Fibroblastos/metabolismo
7.
Cell Rep ; 41(1): 111435, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198274

RESUMEN

Autophagy is essential for the maintenance of energy homeostasis and for survival during the neonatal starvation period. At birth, the trans-placental nutrient supply is suddenly interrupted, and neonates adapt to this adverse circumstance by activating autophagy. However, the mechanisms underlying the precise regulation of neonatal autophagy remain undefined. Here, we show that the destabilization of TP53 by the deubiquitylase ubiquitin-specific peptidase 10 (USP10) is essential for neonatal autophagy and survival. Usp10 deficiency results in decreased E3 ligase activity of MDM2 and accumulation of cytoplasmic TP53, which interferes with the conjugation of ATG12 and ATG5, the key autophagy-related genes, and ultimately inhibits autophagy in neonatal mice. Combined deletion of Tp53 and Usp10 recovers the nutrition supply and rescues the death phenotype of Usp10-deficient neonates. These findings reveal a role of the USP10-MDM2-TP53 axis in nutrient homeostasis and neonatal viability and provide insights into the long-perplexing mechanism by which cytoplasmic TP53 inhibits autophagy.


Asunto(s)
Autofagia , Placenta , Animales , Proteína 5 Relacionada con la Autofagia , Femenino , Ratones , Embarazo , Proteína p53 Supresora de Tumor , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas , Proteasas Ubiquitina-Específicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...