Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171545, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458454

RESUMEN

Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.

2.
BMC Plant Biol ; 23(1): 626, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062387

RESUMEN

BACKGROUND: Glycosylation, catalyzed by UDP-glycosyltransferase (UGT), was important for enhancing solubility, bioactivity, and diversity of flavonoids. Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. In addition to provide high quality of edible oils and proteins, peanut seeds contain a rich source of flavonoid glycosides that benefit human health. However, information of UGT gene family was quite limited in peanut. RESULTS: In present study, a total of 267 AhUGTs clustered into 15 phylogenetic groups were identified in peanut genome. Group I has greatly expanded to contain the largest number of AhUGT genes. Segmental duplication was the major driving force for AhUGT gene family expansion. Transcriptomic analysis of gene expression profiles in various tissues and under different abiotic stress treatments indicated AhUGTs were involved in peanut growth and abiotic stress response. AhUGT75A (UGT73CG33), located in mitochondria, was characterized as a flavonoid 7-O-UGT by in vitro enzyme assays. The transcript level of AhUGT75A was strongly induced by abiotic stress. Overexpression of AhUGT75A resulted in accumulating less amount of malondialdehyde (MDA) and superoxide, and enhancing tolerance against drought and/or salt stress in transgenic Arabidopsis. These results indicated AhUGT75A played important roles in conferring abiotic stress tolerance through reactive oxygen species scavenging. CONCLUSIONS: Our research only not provides valuable information for functional characterization of UGTs in peanut, but also gives new insights into potential applications in breeding new cultivars with both desirable stress tolerance and health benefits.


Asunto(s)
Arabidopsis , Arachis , Humanos , Arachis/genética , Glicosiltransferasas/genética , Filogenia , Flavonoides , Fitomejoramiento , Estrés Fisiológico/genética , Uridina Difosfato
3.
J Adv Res ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37739123

RESUMEN

INTRODUCTION: Peanut is susceptible to infection of Aspergillus fungi and conducive to aflatoxin contamination, hence developing aflatoxin-resistant variety is highly meaningful. Identifying functional genes or loci conferring aflatoxin resistance and molecular diagnostic marker are crucial for peanut breeding. OBJECTIVES: This work aims to (1) identify candidate gene for aflatoxin production resistance, (2) reveal the related resistance mechanism, and (3) develop diagnostic marker for resistance breeding program. METHODS: Resistance to aflatoxin production in a recombined inbred line (RIL) population derived from a high-yielding variety Xuhua13 crossed with an aflatoxin-resistant genotype Zhonghua 6 was evaluated under artificial inoculation for three consecutive years. Both genetic linkage analysis and QTL-seq were conducted for QTL mapping. The candidate gene was further fine-mapped using a secondary segregation mapping population and validated by transgenic experiments. RNA-Seq analysis among resistant and susceptible RILs was used to reveal the resistance pathway for the candidate genes. RESULTS: The major effect QTL qAFTRA07.1 for aflatoxin production resistance was mapped to a 1.98 Mbp interval. A gene, AhAftr1 (Arachis hypogaea Aflatoxin resistance 1), was detected structure variation (SV) in leucine rich repeat (LRR) domain of its production, and involved in disease resistance response through the effector-triggered immunity (ETI) pathway. Transgenic plants with overexpression of AhAftr1(ZH6) exhibited 57.3% aflatoxin reduction compared to that of AhAftr1(XH13). A molecular diagnostic marker AFTR.Del.A07 was developed based on the SV. Thirty-six lines, with aflatoxin content decrease by over 77.67% compared to the susceptible control Zhonghua12 (ZH12), were identified from a panel of peanut germplasm accessions and breeding lines through using AFTR.Del.A07. CONCLUSION: Our findings would provide insights of aflatoxin production resistance mechanisms and laid meaningful foundation for further breeding programs.

4.
Phytomedicine ; 118: 154937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393831

RESUMEN

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Polygala , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polygala/genética , ARN Ribosómico 16S , Histidina/metabolismo , Histidina/farmacología , Histidina/uso terapéutico , Triptófano/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico , Hígado , Heces , Ratones Endogámicos C57BL
5.
Langmuir ; 39(29): 10163-10177, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436774

RESUMEN

Au nanoparticles are efficient catalysts for selective oxidations. The interaction between Au nanoparticles and supports is critical for achieving high catalytic activity. Herein, Au nanoparticles are supported on a zeolitic octahedral metal oxide based on Mo and V. The charge of Au is controlled by the surface oxygen vacancies of the supports, and the redox property of the zeolitic vanadomolybdate is highly dependent on Au loading. The Au-supported zeolitic vanadomolybdate is used as a heterogeneous catalyst for alcohol oxidation under mild conditions with molecular oxygen as an oxidant. The supported Au catalyst can be recovered and reused without the loss of activity.

6.
Genes (Basel) ; 14(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36980897

RESUMEN

Peanut is susceptible to Aspergillus flavus infection, and the consequent aflatoxin contamination has been recognized as an important risk factor affecting food safety and industry development. Planting peanut varieties with resistance to aflatoxin contamination is regarded as an ideal approach to decrease the risk in food safety, but most of the available resistant varieties have not been extensively used in production because of their low yield potential mostly due to possessing small pods and seeds. Hence, it is highly necessary to integrate resistance to aflatoxin and large seed weight. In this study, an RIL population derived from a cross between Zhonghua 16 with high yield and J 11 with resistance to infection of A. flavus and aflatoxin production, was used to identify quantitative trait locus (QTL) for aflatoxin production (AP) resistance and hundred-seed weight (HSW). From combined analysis using a high-density genetic linkage map constructed, 11 QTLs for AP resistance with 4.61-11.42% phenotypic variation explanation (PVE) and six QTLs for HSW with 3.20-28.48% PVE were identified, including three major QTLs for AP resistance (qAFTA05.1, qAFTB05.2 and qAFTB06.3) and three for HSW (qHSWA05, qHSWA08 and qHSWB06). In addition, qAFTA05.1, qAFTB06.3, qHSWA05, qHSWA08 and qHSWB06 were detected in multiple environments. The aflatoxin contents under artificial inoculation were decreased by 34.77-47.67% in those segregated lines harboring qAFTA05.1, qAFTB05.2 and qAFTB06.3, while the HSWs were increased by 47.56-49.46 g in other lines harboring qHSWA05, qHSWA08 and qHSWB06. Conditional QTL mapping indicated that HSW and percent seed infection index (PSII) had no significant influence on aflatoxin content. Interestingly, the QT 1059 simultaneously harboring alleles of aflatoxin content including qAFTA05.1 and qAFTB05.2, alleles of PSII including qPSIIB03.1, qPSIIB03.2, and qPSIIB10 and alleles of HSW including qHSWA05, qHSWB06, qHSWA08 had better resistance to A. flavus infection and to toxin production and higher yield potential compared with the two parents of the RIL. The above identified major loci for AP resistance and HWS would be helpful for marker-assisted selection in peanut breeding.


Asunto(s)
Aflatoxinas , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Arachis/genética , Fitomejoramiento , Mapeo Cromosómico
7.
Theor Appl Genet ; 136(4): 78, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952020

RESUMEN

KEY MESSAGE: An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome A08, qSUCA08.2, controlling sucrose content will benefit peanut flavor improvement. Sucrose is the main soluble sugar in mature peanut kernel, and its content is a key determinant of flavor. However, the genetic basis of sucrose content in peanut remains poorly understood, which limits the progress of flavor improvement. In the present study, two genomic regions (qSUCA08a and qSUCB06a) for sucrose content on chromosomes A08 and B06 were identified by QTL-seq in a RIL population derived from a cross between Zhonghua 10 and ICG 12625. In the interval of qSUCB06a, QTL qSUCB06.2 was detected through QTL mapping in a single environment. The qSUCA08a was further dissected into 3 adjacent genomic regions using linkage analysis including a major QTL qSUCA08.2 explaining 5.43-17.84% phenotypic variation across five environments. A 61-bp insertion at position 35,099,320 in the higher sucrose parent ICG 12625 was found in qSUCA08.2. An InDel marker SUC.InDel.A08 based on the insertion/deletion polymorphism was developed and validated within a natural population containing 172 peanut cultivars in two environments. The mean sucrose content of 93 cultivars with ICG 12625 allele was significantly higher than that of 79 cultivars with Zhonghua 10 allele. The qSUCA08.2 corresponding to a 2.11 Mb interval harbored 110 genes. Among these genes, a total of 19 genes were considered as candidate genes including 5 non-synonymous mutation genes and 14 differentially expressed genes during seed development. These results provide new insights into the genetic basis of sucrose regulation in peanut and benefit the breeding program for developing new varieties with excellent flavor.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Fenotipo , Sacarosa , Fitomejoramiento
8.
PLoS One ; 17(12): e0279650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584016

RESUMEN

Peanut (Arachis hypogaea L.) is an important source of edible oil and protein for human nutrition. The quality of peanut seed oil is mainly determined by the composition of fatty acids, especially the contents of oleic acid and linoleic acid. Improving the composition of fatty acids in the seed oil is one of the main objectives for peanut breeding globally. To uncover the genetic basis of fatty acids and broaden the genetic variation in future peanut breeding programs, this study used genome-wide association studies (GWAS) to identify loci associated with target traits and developed diagnostic marker. The contents of eight fatty acid components of the Chinese peanut mini-core collection were measured under four environments. Using the phenotypic information and over one hundred thousand single nucleotide polymorphisms (SNPs), GWAS were conducted to investigate the genetics basis of fatty acids under multi-environments. Overall, 75 SNPs were identified significant trait associations with fatty acid components. Nineteen associations were repeatedly identified in multiple environments, and 13 loci were co-associated with two or three traits. Three stable major associated loci were identified, including two loci for oleic acid and linoleic acid on chromosome A09 [mean phenotypic variation explained (PVE): 38.5%, 10.35%] and one for stearic acid on B06 (mean PVE: 23%). According to functional annotations, 21 putative candidate genes related to fatty acid biosynthesis were found underlying the three associations. The allelic effect of SNP A09-114690064 showed that the base variation was highly correlated with the phenotypic variation of oleic acid and linoleic acid contents, and a cost-effective Kompetitive allele-Specific PCR (KASP) diagnostic marker was developed. Furthermore, the SNP A09-114690064 was found to change the cis-element CAAT (-) in the promoter of ahFAD2A to YACT (+), leading dozens of times higher expression level. The enhancer-like activity of ahFAD2A promoter was identified that was valuable for enriching the regulation mechanism of ahFAD2A. This study improved our understanding on the genetic architecture of fatty acid components in peanut, and the new effective diagnostic marker would be useful for marker-assisted selection of high-oleic peanut breeding.


Asunto(s)
Arachis , Ácidos Grasos , Arachis/genética , Arachis/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Estudio de Asociación del Genoma Completo , Ácido Linoleico/metabolismo , Ácido Oléico/metabolismo , Aceite de Cacahuete , Fenotipo , Fitomejoramiento
9.
Front Pharmacol ; 13: 979400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147321

RESUMEN

Jian-Ti-Kang-Yi decoction (JTKY) is widely used in the treatment of COVID-19. However, the protective mechanisms of JTKY against pneumonia remain unknown. In this study, polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral dsRNA, was used to induce pneumonia in mice; the therapeutic effects of JTKY on poly(I:C)-induced pneumonia model mice were evaluated. In addition, the anti-inflammatory and anti-oxidative potentials of JTKY were also investigated. Lastly, the metabolic regulatory effects of JTKY in poly(I:C)-induced pneumonia model mice were studied using untargeted metabolomics. Our results showed that JTKY treatment decreased the wet-to-dry ratio in the lung tissue, total protein concentration, and total cell count of the bronchoalveolar lavage fluid (BALF). Hematoxylin and Eosin (HE) and Masson staining indicated that the JTKY treatment alleviated the pathological changes and decreased the fibrotic contents in the lungs. JTKY treatment also decreased the expression of pro-inflammatory cytokines [interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α)] and increased the levels of immunomodulatory cytokines (IL-4 and IL-10) in the BALF and serum. Flow cytometry analysis showed that the JTKY treatment lowered the ratio of CD86+/CD206+ macrophages in the BALF, decreased inducible nitric oxide synthase (iNOS) level, and increased arginase 1 (Arg-1) level in lung. JTKY also lowered CD11b+Ly6G+ neutrophils in BALF and decreased myeloperoxidase (MPO) activity in lung. Moreover, it also elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and decreased methane dicarboxylic aldehyde (MDA) level in lung. Untargeted metabolomic analysis showed that the JTKY treatment could affect 19 metabolites in lung, such as L-adrenaline, L-asparagine, ornithine, and alpha-ketoglutaric acid. These metabolites are associated with the synthesis and degradation of ketone bodies, butanoate, alanine, aspartate, and glutamate metabolism, and tricarboxylic acid (TCA) cycle processes. In conclusion, our study demonstrated that treatment with JTKY ameliorated poly(I:C)-induced pneumonia. The mechanism of action of JTKY may be associated with the inhibition of the inflammatory response, the reduction of oxidative stress, and the regulation of the synthesis and degradation of ketone bodies, TCA cycle, and metabolism of alanine, aspartate, glutamate, and butanoate processes in lung.

10.
BMC Plant Biol ; 22(1): 207, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35448951

RESUMEN

BACKGROUND: Aflatoxin contamination caused by Aspergillus fungi has been a serious factor affecting food safety of peanut (Arachis hypogaea L.) because aflatoxins are highly harmful for human and animal health. As three mechanisms of resistance to aflatoxin in peanut including shell infection resistance, seed infection resistance and aflatoxin production resistance exist among naturally evolved germplasm stocks, it is highly crucial to pyramid these three resistances for promoting peanut industry development and protecting consumers' health. However, less research effort has been made yet to investigate the differentiation and genetic relationship among the three resistances in diversified peanut germplasm collections. RESULTS: In this study, the Chinese peanut mini-mini core collection selected from a large basic collection was systematically evaluated for the three resistances against A. flavus for the first time. The research revealed a wide variation among the diversified peanut accessions for all the three resistances. Totally, 14 resistant accessions were identified, including three with shell infection resistance, seven with seed infection resistance and five with aflatoxin production resistance. A special accession, Zh.h1312, was identified with both seed infection and aflatoxin production resistance. Among the five botanic types of A. hypogaea, the var. vulgaris (Spanish type) belonging to subspecies fastigiata is the only one which possessed all the three resistances. There was no close correlation between shell infection resistance and other two resistances, while there was a significant positive correlation between seed infection and toxin production resistance. All the three resistances had a significant negative correlation with pod or seed size. A total of 16 SNPs/InDels associated with the three resistances were identified through genome-wide association study (GWAS). Through comparative analysis, Zh.h1312 with seed infection resistance and aflatoxin production resistance was also revealed to possess all the resistance alleles of associated loci for seed infection index and aflatoxin content. CONCLUSIONS: This study provided the first comprehensive understanding of differentiation of aflatoxin resistance in diversified peanut germplasm collection, and would further contribute to the genetic enhancement for resistance to aflatoxin contamination.


Asunto(s)
Aflatoxinas , Animales , Arachis/genética , Arachis/microbiología , Aspergillus flavus/genética , China , Estudio de Asociación del Genoma Completo
11.
Front Plant Sci ; 13: 1065267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589096

RESUMEN

Introduction: The wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking. Methods: We investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties. Results: The analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B). Discussion: From the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications.

12.
Front Plant Sci ; 12: 745408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745176

RESUMEN

The cultivated peanut (Arachis hypogaea L.), which is rich in edible oil and protein, is widely planted around the world as an oil and cash crop. However, aflatoxin contamination seriously affects the quality safety of peanuts, hindering the development of the peanut industry and threatening the health of consumers. Breeding peanut varieties with resistance to Aspergillus flavus infection is important for the control of aflatoxin contamination, and understanding the genetic basis of resistance is vital to its genetic enhancement. In this study, we reported the quantitative trait locus (QTL) mapping of resistance to A. flavus infection of a well-known resistant variety, J11. A mapping population consisting of 200 recombinant inbred lines (RILs) was constructed by crossing a susceptible variety, Zhonghua 16, with J11. Through whole-genome resequencing, a genetic linkage map was constructed with 2,802 recombination bins and an average inter-bin distance of 0.58 cM. Combined with phenotypic data of an infection index in 4 consecutive years, six novel resistant QTLs with 5.03-10.87% phenotypic variances explained (PVE) were identified on chromosomes A05, A08, B01, B03, and B10. The favorable alleles of five QTLs were from J11, while that of one QTL was from Zhonghua 16. The combination of these favorable alleles significantly improved resistance to A. flavus infection. These results could contribute greatly to the understanding of the genetic basis of A. flavus resistance and could be meaningful in the improvement of further resistance in peanuts.

13.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298903

RESUMEN

Sucrose content is a crucial indicator of quality and flavor in peanut seed, and there is a lack of clarity on the molecular basis of sucrose metabolism in peanut seed. In this context, we performed a comprehensive comparative transcriptome study on the samples collected at seven seed development stages between a high-sucrose content variety (ICG 12625) and a low-sucrose content variety (Zhonghua 10). The transcriptome analysis identified a total of 8334 genes exhibiting significantly different abundances between the high- and low-sucrose varieties. We identified 28 differentially expressed genes (DEGs) involved in sucrose metabolism in peanut and 12 of these encoded sugars will eventually be exported transporters (SWEETs). The remaining 16 genes encoded enzymes, such as cell wall invertase (CWIN), vacuolar invertase (VIN), cytoplasmic invertase (CIN), cytosolic fructose-bisphosphate aldolase (FBA), cytosolic fructose-1,6-bisphosphate phosphatase (FBP), sucrose synthase (SUS), cytosolic phosphoglucose isomerase (PGI), hexokinase (HK), and sucrose-phosphate phosphatase (SPP). The weighted gene co-expression network analysis (WGCNA) identified seven genes encoding key enzymes (CIN, FBA, FBP, HK, and SPP), three SWEET genes, and 90 transcription factors (TFs) showing a high correlation with sucrose content. Furthermore, upon validation, six of these genes were successfully verified as exhibiting higher expression in high-sucrose recombinant inbred lines (RILs). Our study suggested the key roles of the high expression of SWEETs and enzymes in sucrose synthesis making the genotype ICG 12625 sucrose-rich. This study also provided insights into the molecular basis of sucrose metabolism during seed development and facilitated exploring key candidate genes and molecular breeding for sucrose content in peanuts.


Asunto(s)
Arachis/genética , Arachis/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética , Metabolismo de los Hidratos de Carbono/genética , Pared Celular/genética , Pared Celular/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Semillas/genética , Semillas/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
14.
Front Plant Sci ; 12: 644402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868342

RESUMEN

Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural stilbene phytoalexin which is also found to be good for human health. Cultivated peanut (Arachis hypogaea L.), a worldwide important legume crop, is one of the few sources of human's dietary intake of resveratrol. Although the variations of resveratrol contents among peanut varieties were observed, the variations across environments and its underlying genetic basis were poorly investigated. In this study, the resveratrol content in seeds of a recombination inbred line (RIL) population (Zhonghua 6 × Xuhua 13, 186 progenies) were quantified by high performance liquid chromatography (HPLC) method across four environments. Genotypes, environments and genotype × environment interactions significantly influenced the resveratrol contents in the RIL population. A total of 8,114 high-quality single nucleotide polymorphisms (SNPs) were identified based on double-digest restriction-site-associated DNA sequencing (ddRADseq) reads. These SNPs were clustered into bins using a reference-based method, which facilitated the construction of high-density genetic map (2,183 loci with a total length of 2,063.55 cM) and the discovery of several chromosome translocations. Through composite interval mapping (CIM), nine additive quantitative trait loci (QTL) for resveratrol contents were identified on chromosomes A01, A07, A08, B04, B05, B06, B07, and B10 with 5.07-8.19% phenotypic variations explained (PVE). Putative genes within their confidential intervals might play roles in diverse primary and secondary metabolic processes. These results laid a foundation for the further genetic dissection of resveratrol content as well as the breeding and production of high-resveratrol peanuts.

15.
Toxins (Basel) ; 12(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121605

RESUMEN

Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) are the most common aflatoxins produced by Aspergillus flavus in peanuts, with high carcinogenicity and teratogenicity. Identification of DNA markers associated with resistance to aflatoxin production is likely to offer breeders efficient tools to develop resistant cultivars through molecular breeding. In this study, seeds of 99 accessions of a Chinese peanut mini-mini core collection were investigated for their reaction to aflatoxin production by a laboratory kernel inoculation assay. Two resistant accessions (Zh.h0551 and Zh.h2150) were identified, with their aflatoxin content being 8.11%-18.90% of the susceptible control. The 99 peanut accessions were also genotyped by restriction site-associated DNA sequencing (RAD-Seq) for a genome-wide association study (GWAS). A total of 60 SNP (single nucleotide polymorphism) markers associated with aflatoxin production were detected, and they explained 16.87%-31.70% of phenotypic variation (PVE), with SNP02686 and SNP19994 possessing 31.70% and 28.91% PVE, respectively. Aflatoxin contents of accessions with "AG" (existed in Zh.h0551 and Zh.h2150) and "GG" genotypes of either SNP19994 or SNP02686 were significantly lower than that of "AA" genotypes in the mean value of a three-year assay. The resistant accessions and molecular markers identified in this study are likely to be helpful for deployment in aflatoxin resistance breeding in peanuts.


Asunto(s)
Aflatoxinas/biosíntesis , Arachis/genética , Arachis/microbiología , Resistencia a la Enfermedad/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
16.
J Sep Sci ; 43(6): 1024-1031, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31916409

RESUMEN

Resveratrol, a stilbene phytoalexin in plants, is believed to benefit human health. In this study, an optimized enzyme-assisted method was developed to extract the total content of trans-resveratrol (free or combined with glucose) in peanut seeds, followed by detection using high-performance liquid chromatography. The extraction process was optimized by Box-Behnken design and response surface methodology. The optimized enzyme concentration, digestion time, pH, and temperature were 3.02 g/L, 57.06 min, 5.88, and 51.05°C, respectively. Validation tests indicated that the experimental yield of trans-resveratrol was 0.183 ± 0.007 µg/g with a relative standard deviation of 3.87% (n = 5) under the optimal condition, which was closely agreed with the predicted value (0.182 µg/g). The recoveries obtained from the spiked samples were varied from 89.4 to 103.9%. Therefore, this study will provide a useful method for quantification of total trans-resveratrol in peanut seeds.


Asunto(s)
Arachis/química , Resveratrol/aislamiento & purificación , Semillas/química , Celulasa/química , Celulasa/metabolismo , Cromatografía Líquida de Alta Presión , Resveratrol/química , Resveratrol/metabolismo , Propiedades de Superficie
17.
BMC Genet ; 20(1): 32, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30866805

RESUMEN

BACKGROUND: Aflatoxin contamination caused by Aspergillus flavus is a major constraint to peanut industry worldwide due to its toxicological effects to human and animals. Developing peanut varieties with resistance to seed infection and/or aflatoxin accumulation is the most effective and economic strategy for reducing aflatoxin risk in food chain. Breeding for resistance to aflatoxin in peanut is a challenging task for breeders because the genetic basis is still poorly understood. To identify the quantitative trait loci (QTLs) for resistance to aflatoxin contamination in peanut, a recombinant inbred line (RIL) population was developed from crossing Zhonghua 10 (susceptible) with ICG 12625 (resistant). The percent seed infection index (PSII), the contents of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) of RILs were evaluated by a laboratory kernel inoculation assay. RESULTS: Two QTLs were identified for PSII including one major QTL with 11.32-13.00% phenotypic variance explained (PVE). A total of 12 QTLs for aflatoxin accumulation were detected by unconditional analysis, and four of them (qAFB1A07 and qAFB1B06.1 for AFB1, qAFB2A07 and qAFB2B06 for AFB2) exhibited major and stable effects across multiple environments with 9.32-21.02% PVE. Furthermore, not only qAFB1A07 and qAFB2A07 were co-localized in the same genetic interval on LG A07, but qAFB1B06.1 was also co-localized with qAFB2B06 on LG B06. Conditional QTL mapping also confirmed that there was a strong interaction between resistance to AFB1 and AFB2 accumulation. Genotyping of RILs revealed that qAFB1A07 and qAFB1B06.1 interacted additively to improve the resistance to both AFB1 and AFB2 accumulation. Additionally, validation of the two markers was performed in diversified germplasm collection and four accessions with resistance to aflatoxin accumulation were identified. CONCLUSIONS: Single major QTL for resistance to PSII and two important co-localized intervals associated with major QTLs for resistance to AFB1 and AFB2. Combination of these intervals could improve the resistance to aflatoxin accumulation in peanut. SSR markers linked to these intervals were identified and validated. The identified QTLs and associated markers exhibit potential to be applied in improvement of resistance to aflatoxin contamination.


Asunto(s)
Aflatoxinas/análisis , Arachis/química , Arachis/genética , Contaminación de Alimentos , Marcadores Genéticos/genética , Genómica , Aflatoxinas/biosíntesis , Arachis/microbiología , Aspergillus flavus/metabolismo , Aspergillus flavus/fisiología , Genoma de Planta/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...