Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 10(7): 1074-1080, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31312411

RESUMEN

One effective means to achieve inhibitor specificity for RAF kinases, an important family of cancer drug targets, has been to target the monomeric inactive state conformation of the kinase domain, which, unlike most other kinases, can accommodate sulfonamide-containing drugs such as vemurafenib and dabrafenib because of the presence of a unique pocket specific to inactive RAF kinases. We previously reported an alternate strategy whereby rigidification of a nonselective pyrazolo[3,4-d]pyrimidine-based inhibitor through ring closure afforded moderate but appreciable increases in selectivity for RAF kinases. Here, we show that a further application of the rigidification strategy to a different pyrazolopyrimidine-based scaffold dramatically improved selectivity for RAF kinases. Crystal structure analysis confirmed our inhibitor design hypothesis revealing that 2l engages an active-like state conformation of BRAF normally associated with poorly discriminating inhibitors. When screened against a panel of distinct cancer cell lines, the optimized inhibitor 2l primarily inhibited the proliferation of the expected BRAFV600E-harboring cell lines consistent with its kinome selectivity profile. These results suggest that rigidification could be a general and powerful strategy for enhancing inhibitor selectivity against protein kinases, which may open up therapeutic opportunities not afforded by other approaches.

2.
Biochemistry ; 58(24): 2715-2719, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31181899

RESUMEN

Despite its power in identifying highly potent ligands for select protein targets, conventional medicinal chemistry is limited by its low throughput and lack of proteomic selectivity information. We seek to develop a chemoproteomic approach for discovering covalent ligands for protein targets in an unbiased, high-throughput manner. Tripartite probe compounds composed of a heterocyclic core, an electrophilic "warhead", and an alkyne tag have been designed and synthesized for covalently labeling and identifying targets in cells. We have developed a novel condensation reaction to prepare 2-chloromethylquinoline (2-CMQ), an electrophilic heterocycle. These chloromethylquinolines potently and covalently bind to a number of cellular protein targets, including prostaglandin E synthase 2 (PTGES2), a critical regulator of cell proliferation, apoptosis, angiogenesis, inflammation, and immune surveillance. The 2-CMQs that we have developed here are novel PTGES2 binders that have the potential to serve as therapies for the treatment of human diseases such as inflammation.


Asunto(s)
Sondas Moleculares/farmacología , Prostaglandina-E Sintasas/efectos de los fármacos , Quinolinas/farmacología , Glutatión Transferasa/química , Glutatión Transferasa/efectos de los fármacos , Células HEK293 , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/efectos de los fármacos , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Prostaglandina-E Sintasas/química , Proteoma/química , Proteómica/métodos , Quinolinas/síntesis química , Quinolinas/química
3.
Eur J Med Chem ; 146: 519-528, 2018 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-29407977

RESUMEN

Established strategies for discovering selective kinase inhibitors are target-centric as they often target certain structural or reactive features in the target kinase. In the absence of such prominent features, there is a lack of general methods for discovering selective inhibitors. Here we describe a new strategy that exploits conformational flexibility of kinases for achieving selective kinase inhibition. Through ring closure, we designed and synthesized a panel of isoquinoline-containing compounds as rigidified analogs of an amidophenyl-containing parent compound. These analogs potently inhibit kinases including Abl and BRAF but have diminished inhibition against some other kinases compared to the parent compound. Sequence analysis reveals that many of the kinases that are potently inhibited by the isoquonoline-containing compounds contain a long insertion within their catalytic domains. A crystal structure of one rigid compound bound to BRAF confirmed its binding mode. Our findings highlight the potential of a novel strategy of rigidification for improving the selectivity of kinase inhibitors.


Asunto(s)
Isoquinolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
4.
Cell Host Microbe ; 20(6): 770-784, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27866900

RESUMEN

RIG-I detects double-stranded RNA (dsRNA) to trigger antiviral cytokine production. Protein deamidation is emerging as a post-translational modification that chiefly regulates protein function. We report here that UL37 of herpes simplex virus 1 (HSV-1) is a protein deamidase that targets RIG-I to block RNA-induced activation. Mass spectrometry analysis identified two asparagine residues in the helicase 2i domain of RIG-I that were deamidated upon UL37 expression or HSV-1 infection. Deamidation rendered RIG-I unable to sense viral dsRNA, thus blocking its ability to trigger antiviral immune responses and restrict viral replication. Purified full-length UL37 and its carboxyl-terminal fragment were sufficient to deamidate RIG-I in vitro. Uncoupling RIG-I deamidation from HSV-1 infection, by engineering deamidation-resistant RIG-I or introducing deamidase-deficient UL37 into the HSV-1 genome, restored RIG-I activation and antiviral immune signaling. Our work identifies a viral deamidase and extends the paradigm of deamidation-mediated suppression of innate immunity by microbial pathogens.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , ADN Helicasas/metabolismo , Herpesvirus Humano 1/genética , Proteínas Virales/metabolismo , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Antivirales/inmunología , Asparagina , Línea Celular/virología , Citocinas/metabolismo , Proteína 58 DEAD Box/efectos de los fármacos , ADN Recombinante , Escherichia coli/genética , Células HEK293/virología , Herpes Simple , Herpesvirus Humano 1/enzimología , Humanos , Evasión Inmune , Inmunidad Innata , Espectrometría de Masas , Mutación , Procesamiento Proteico-Postraduccional , ARN Bicatenario , ARN Viral/metabolismo , Transducción de Señal , Proteínas Estructurales Virales/análisis , Proteínas Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA