Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cancer Discov ; 7(11): 1248-1265, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28864476

RESUMEN

Treatment of advanced BRAFV600-mutant melanoma using a BRAF inhibitor or its combination with a MEK inhibitor typically elicits partial responses. We compared the transcriptomes of patient-derived tumors regressing on MAPK inhibitor (MAPKi) therapy against MAPKi-induced temporal transcriptomic states in human melanoma cell lines or murine melanoma in immune-competent mice. Despite heterogeneous dynamics of clinical tumor regression, residual tumors displayed highly recurrent transcriptomic alterations and enriched processes, which were also observed in MAPKi-selected cell lines (implying tumor cell-intrinsic reprogramming) or in bulk mouse tumors (and the CD45-negative or CD45-positive fractions, implying tumor cell-intrinsic or stromal/immune alterations, respectively). Tumor cell-intrinsic reprogramming attenuated MAPK dependency, while enhancing mesenchymal, angiogenic, and IFN-inflammatory features and growth/survival dependence on multi-RTKs and PD-L2. In the immune compartment, PD-L2 upregulation in CD11c+ immunocytes drove the loss of T-cell inflammation and promoted BRAFi resistance. Thus, residual melanoma early on MAPKi therapy already displays potentially exploitable adaptive transcriptomic, epigenomic, immune-regulomic alterations.Significance: Incomplete MAPKi-induced melanoma regression results in transcriptome/methylome-wide reprogramming and MAPK-redundant escape. Although regressing/residual melanoma is highly T cell-inflamed, stromal adaptations, many of which are tumor cell-driven, could suppress/eliminate intratumoral T cells, reversing tumor regression. This catalog of recurrent alterations helps identify adaptations such as PD-L2 operative tumor cell intrinsically and/or extrinsically early on therapy. Cancer Discov; 7(11); 1248-65. ©2017 AACR.See related commentary by Haq, p. 1216This article is highlighted in the In This Issue feature, p. 1201.


Asunto(s)
Melanoma Experimental/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Transcriptoma/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Indoles/administración & dosificación , Antígenos Comunes de Leucocito/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , Melanoma/genética , Melanoma/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Sulfonamidas/administración & dosificación , Transcriptoma/efectos de los fármacos
3.
J Biol Chem ; 290(22): 14218-25, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25897079

RESUMEN

Xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH (TFIIH) transcription complex and plays essential roles in transcription and nucleotide excision repair. Although iron-sulfur (Fe-S) cluster binding by XPD is required for activity, the process mediating Fe-S cluster assembly remains poorly understood. We recently identified a cytoplasmic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, CIAO1, and FAM96B that is required for the biogenesis of extramitochondrial Fe-S proteins including XPD. Here, we use XPD as a prototypical Fe-S protein to further characterize how Fe-S assembly is facilitated by the CIA targeting complex. Multiple lines of evidence indicate that this process occurs in a stepwise fashion in which XPD acquires a Fe-S cluster from the CIA targeting complex before assembling into TFIIH. First, XPD was found to associate in a mutually exclusive fashion with either TFIIH or the CIA targeting complex. Second, disrupting Fe-S cluster assembly on XPD by either 1) depleting cellular iron levels or 2) utilizing XPD mutants defective in either Fe-S cluster or CIA targeting complex binding blocks Fe-S cluster assembly and prevents XPD incorporation into TFIIH. Finally, subcellular fractionation studies indicate that the association of XPD with the CIA targeting complex occurs in the cytoplasm, whereas its association with TFIIH occurs largely in the nucleus where TFIIH functions. Together, these data establish a sequential assembly process for Fe-S assembly on XPD and highlight the existence of quality control mechanisms that prevent the incorporation of immature apoproteins into their cellular complexes.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Factor de Transcripción TFIIH/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN/química , ADN Helicasas/metabolismo , Reparación del ADN , Células HeLa , Humanos , Hierro/química , Mitocondrias/metabolismo , Unión Proteica , Proteómica , Fracciones Subcelulares/metabolismo , Azufre/química
4.
Cancer Cell ; 27(2): 240-56, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25600339

RESUMEN

Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.


Asunto(s)
Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/patología , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación
5.
Cancer Discov ; 4(1): 69-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24265152

RESUMEN

BRAF inhibitor (BRAFi) therapy leads to remarkable anti melanoma responses, but the initial tumor shrinkage is commonly incomplete, providing a nidus for subsequent disease progression. Adaptive signaling may underlie early BRAFi resistance and influence the selection pattern for genetic variants, causing late, acquired resistance. We show here that BRAFi (or BRAFi + MEKi) therapy in patients frequently led to rebound phosphorylated AKT (p-AKT) levels in their melanomas early on-treatment. In cell lines, BRAFi treatment led to rebound levels of receptor tyrosine kinases (RTK; including PDGFRß), phosphatidyl (3,4,5)-triphosphate (PIP3), pleckstrin homology domain recruitment, and p-AKT. PTEN expression limited this BRAFi-elicited PI3K-AKT signaling, which could be rescued by the introduction of a mutant AKT1 (Q79K) known to confer acquired BRAFi resistance. Functionally, AKT1(Q79K) conferred BRAFi resistance via amplification of BRAFi-elicited PI3K-AKT signaling. In addition, mitogen-activated protein kinase pathway inhibition enhanced clonogenic growth dependency on PI3K or AKT. Thus, adaptive or genetic upregulation of AKT critically participates in melanoma survival during BRAFi therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Neoplasias Cutáneas/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Melanoma/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA