Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341205

RESUMEN

Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.

2.
J Agric Food Chem ; 72(36): 20130-20139, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39192723

RESUMEN

We combined a CRISPR/Cas12a system with a hybridization chain reaction (HCR) to develop an ultrasensitive magnetic relaxation switching (MRS) biosensor for detecting viable Salmonella typhimurium (S. typhimurium). Magnetic nanoparticles of two sizes (30 and 1000 nm: MNP30 and MNP1000, respectively) were coupled through HCR. The S. typhimurium gene-activated CRISPR/Cas12a system released MNP30 from the MNP1000-HCR-MNP30 complex through a trans-cleavage reaction. After magnetic separation, released MNP30 was collected from the supernatant and served as a transverse relaxation time (T2) signal probe. Quantitative detection of S. typhimurium is achieved by establishing a linear relationship between the change in T2 and the target gene. The biosensor's limit of detection was 77 CFU/mL (LOD = 3S/M, S = 22.30, M = 0.87), and the linear range was 102-108 CFU/mL. The accuracy for detecting S. typhimurium in real samples is comparable to that of qPCR. Thus, this is a promising method for the rapid and effective detection of foodborne pathogens.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Contaminación de Alimentos , Salmonella typhimurium , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/genética , Animales , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hibridación de Ácido Nucleico , Límite de Detección , Porcinos
3.
Behav Sci (Basel) ; 14(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39199052

RESUMEN

To investigate the relationship between sports participation and sport trait confidence, 1659 teenagers in primary and secondary schools who regularly play football were asked to complete the Sports Participation Scale, Collective Self-Esteem Scale, Self-Esteem Scale, and Sport Trait Confidence Scale. The results show that (1) the positive prediction of football participation on sport trait confidence is not significant; (2) collective self-esteem and self-esteem play a mediating role between football participation and sport trait confidence; (3) the mediating effect occurs through three pathways. The study provides theoretical guidance and empirical evidence for the lead and intervention of adolescent football participation on sport trait confidence. This study created a chain-mediated model to examine the mediating role of collective self-esteem and self-esteem in their relationship, as well as the impact of the two as chain mediators on football participation and sport trait confidence.

4.
Food Chem ; 460(Pt 1): 140362, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047485

RESUMEN

Aflatoxin B1 is highly mutagenic in humans, and long-term exposure can impair immunity and increase the risk of cancer. It is imperative to develop immunoassays with convenient operation and high sensitivity to detect aflatoxin B1. This study presents a polystyrene microcolumn-mediated magnetic relaxation switching immunosensor based on a tyramine signal amplification strategy for detecting aflatoxin B1. An environmentally friendly hand-held polystyrene microcolumn was designed as an effective immunoreaction carrier, remaining 91% efficiency after 12 repeated uses. And the microcolumn provides a user-friendly procedure for rapid separation and reagent switching within 3 s by simple stirring in solution. The combination of a strong anti-interference magnetic relaxation switching biosensing and an efficient tyramine signal amplification enables the quantitative detection of aflatoxin B1 in the range of 0.01-10 ng/mL, with a limit of detection of 0.006 ng/mL. This method has potential application in the rapid detection of trace food contaminants.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Contaminación de Alimentos , Poliestirenos , Tiramina , Zea mays , Aflatoxina B1/análisis , Zea mays/química , Contaminación de Alimentos/análisis , Poliestirenos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Tiramina/análisis , Tiramina/química , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Límite de Detección
5.
Cell Rep ; 43(7): 114484, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990725

RESUMEN

The inherent ability of melanoma cells to alter the differentiation-associated transcriptional repertoire to evade treatment and facilitate metastatic spread is well accepted and has been termed phenotypic switching. However, how these facets of cellular behavior are controlled remains largely elusive. Here, we show that cysteine availability, whether from lysosomes (CTNS-dependent) or exogenously derived (SLC7A11-dependent or as N-acetylcysteine), controls melanoma differentiation-associated pathways by acting on the melanocyte master regulator MITF. Functional data indicate that low cysteine availability reduces MITF levels and impairs lysosome functions, which affects tumor ferroptosis sensitivity but improves metastatic spread in vivo. Mechanistically, cysteine-restrictive conditions reduce acetyl-CoA levels to decrease p300-mediated H3K27 acetylation at the melanocyte-restricted MITF promoter, thus forming a cysteine feedforward regulation that controls MITF levels and downstream lysosome functions. These findings collectively suggest that cysteine homeostasis governs melanoma differentiation by maintaining MITF levels and lysosome functions, which protect against ferroptosis and limit metastatic spread.


Asunto(s)
Diferenciación Celular , Cisteína , Lisosomas , Melanoma , Factor de Transcripción Asociado a Microftalmía , Metástasis de la Neoplasia , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Humanos , Cisteína/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Lisosomas/metabolismo , Línea Celular Tumoral , Animales , Ratones , Ferroptosis
6.
ACS Energy Lett ; 9(4): 1717-1724, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633994

RESUMEN

Understanding Li+ transport in organic-inorganic hybrid electrolytes, where Li+ has to lose its organic solvation shell to enter and transport through the inorganic phase, is crucial to the design of high-performance batteries. As a model system, we investigate a range of Li+-conducting particles suspended in a concentrated electrolyte. We show that large Li1.3Al0.3Ti1.7P3O12 and Li6PS5Cl particles can enhance the overall conductivity of the electrolyte. When studying impedance using a cell with a large cell constant, the Nyquist plot shows two semicircles: a high-frequency semicircle related to ion transport in the bulk of both phases and a medium-frequency semicircle attributed to Li+ transporting through the particle/liquid interfaces. Contrary to the high-frequency resistance, the medium-frequency resistance increases with particle content and shows a higher activation energy. Furthermore, we show that small particles, requiring Li+ to overcome particle/liquid interfaces more frequently, are less effective in facilitating Li+ transport. Overall, this study provides a straightforward approach to study the Li+ transport behavior in hybrid electrolytes.

7.
Foods ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38397491

RESUMEN

Obesity has become a serious global public health risk threatening millions of people. In this study, the astaxanthin-anthocyanin nanoparticles (AXT-ACN NPs) were used to investigate their effects on the lipid accumulation and antioxidative capacity of the high-sugar-diet-induced high-fat Caenorhabditis elegans (C. elegans). It can be found that the lifespan, motility, and reproductive capacity of the high-fat C. elegans were significantly decreased compared to the normal nematodes in the control group. However, treatment of high-fat C. elegans with AXT-ACN NPs resulted in a prolonged lifespan of 35 days, improved motility, and a 22.06% increase in total spawn production of the nematodes. Furthermore, AXT-ACN NPs were found to effectively extend the lifespan of high-fat C. elegans under heat and oxidative stress conditions. Oil-red O staining results also demonstrated that AXT-ACN NPs have a remarkable effect on reducing the fat accumulation in nematodes, compared with pure astaxanthin and anthocyanin nanoparticles. Additionally, AXT-ACN NPs can significantly decrease the accumulation of lipofuscin and the level of reactive oxygen species (ROS). The activities of antioxidant-related enzymes in nematodes were further measured, which revealed that the AXT-ACN NPs could increase the activities of catalase (CAT), superoxidase dismutase (SOD), and glutathione peroxidase (GSH-Px), and decrease the malondialdehyde (MDA) content. The astaxanthin and anthocyanin in AXT-ACN NPs showed sound synergistic antioxidation and lipid-lowering effects, making them potential components in functional foods.

8.
Adv Mater ; 36(24): e2312513, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288908

RESUMEN

Polymer electrolytes have received tremendous interest in the development of solid-state batteries, but often fall short in one or more key properties required for practical applications. Herein, a rigid gel polymer electrolyte prepared by immobilizing a liquid mixture of a lithium salt and poly(ethylene glycol) dimethyl ether with only 8 wt% poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) is reported. The high charge density and rigid double helical structure of PBDT lead to formation of a nanofibrillar structure that endows this electrolyte with stronger mechanical properties, wider temperature window, and higher battery rate capability compared to all other poly(ethylene oxide) (PEO)-based electrolytes. The ion transport mechanism in this rigid polymer electrolyte is systematically studied using multiple complementary techniques. Li/LiFePO4 cells show excellent capacity retention over long-term cycling, with thermal cycling reversibility between ambient temperature and elevated temperatures, demonstrating compelling potential for solid-state batteries targeting fast charging at high temperatures and slower discharging at ambient temperature.

9.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873273

RESUMEN

Targeting of specific metabolic pathways in tumor cells has the potential to sensitize them to immune-mediated attack. Here we provide evidence for a specific means of mitochondrial respiratory Complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of the CI subunits Ndufs4 and Ndufs6 , but not other subunits, induces an immune-dependent tumor growth attenuation in mouse melanoma models. We show that deletion of Ndufs4 induces expression of the transcription factor Nlrc5 and genes in the MHC class I antigen presentation and processing pathway. This induction of MHC-related genes is driven by an accumulation of pyruvate dehydrogenase-dependent mitochondrial acetyl-CoA downstream of CI subunit deletion. This work provides a novel functional modality by which selective CI inhibition restricts tumor growth, suggesting that specific targeting of Ndufs4 , or related CI subunits, increases T-cell mediated immunity and sensitivity to ICB.

10.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655606

RESUMEN

With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.

11.
Opt Express ; 31(16): 26807-26814, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710531

RESUMEN

We report a pulse Fe: ZnSe laser pumped by an optical chopper Q-switched Er: YAG laser. By analyzed the spatial and temporal match of the gain and chopper, the maximum energy of the optical chopper Q-switched Er: YAG laser is 31mJ with the pulse width of 165 ns. By employing this Er: YAG laser as pump laser of Fe: ZnSe crystal, the maximum output energy of Fe: ZnSe laser is 10mJ with the pulse width of 80 ns at room temperature, that is the maximum energy of Fe: ZnSe laser at this Q-switched system to the best of our knowledge. We also study the directly Q-switched Fe: ZnSe laser, and the 2.7mJ mid-infrared laser with the pulse width of 200 ns is obtained at 80 K.

12.
J Am Chem Soc ; 145(30): 16538-16547, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466049

RESUMEN

Solid-electrolyte interphases (SEIs) in advanced rechargeable batteries ensure reversible electrode reactions at extreme potentials beyond the thermodynamic stability limits of electrolytes by insulating electrons while allowing the transport of working ions. Such selective ion transport occurs naturally in biological cell membranes as a ubiquitous prerequisite of many life processes and a foundation of biodiversity. In addition, cell membranes can selectively open and close the ion channels in response to external stimuli (e.g., electrical, chemical, mechanical, and thermal), giving rise to "gating" mechanisms that help manage intracellular reactions. We wondered whether the chemistry and structure of SEIs can mimic those of cell membranes, such that ion gating can be replicated. That is, can SEIs realize a reversible switching between two electrochemical behaviors, i.e., the ion intercalation chemistry of batteries and the ion adsorption of capacitors? Herein, we report such SEIs that result in thermally activated selective ion transport. The function of open/close gate switches is governed by the chemical and structural dynamics of SEIs under different thermal conditions, with precise behaviors as conducting and insulating interphases that enable battery and capacitive processes within a finite temperature window. Such an ion gating function is synergistically contributed by Arrhenius-activated ion transport and SEI dissolution/regrowth. Following the understanding of this new mechanism, we then develop an electrochemical method to heal the SEI layer in situ. The knowledge acquired in this work reveals the possibility of hitherto unknown biomimetic properties of SEIs, which will guide us to leverage such complexities to design better SEIs for future battery chemistries.

13.
Nat Commun ; 14(1): 3251, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277330

RESUMEN

While targeted treatment against BRAF(V600E) improve survival for melanoma patients, many will see their cancer recur. Here we provide data indicating that epigenetic suppression of PGC1α defines an aggressive subset of chronic BRAF-inhibitor treated melanomas. A metabolism-centered pharmacological screen further identifies statins (HMGCR inhibitors) as a collateral vulnerability within PGC1α-suppressed BRAF-inhibitor resistant melanomas. Lower PGC1α levels mechanistically causes reduced RAB6B and RAB27A expression, whereby their combined re-expression reverses statin vulnerability. BRAF-inhibitor resistant cells with reduced PGC1α have increased integrin-FAK signaling and improved extracellular matrix detached survival cues that helps explain their increased metastatic ability. Statin treatment blocks cell growth by lowering RAB6B and RAB27A prenylation that reduces their membrane association and affects integrin localization and downstream signaling required for growth. These results suggest that chronic adaptation to BRAF-targeted treatments drive novel collateral metabolic vulnerabilities, and that HMGCR inhibitors may offer a strategy to treat melanomas recurring with suppressed PGC1α expression.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Melanoma , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Sensibilidad Colateral al uso de Fármacos , Recurrencia Local de Neoplasia , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Integrinas/metabolismo , Epigénesis Genética , Línea Celular Tumoral , Mutación , Hidroximetilglutaril-CoA Reductasas/metabolismo
14.
ACS Energy Lett ; 8(4): 1944-1951, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090169

RESUMEN

Lithium batteries rely crucially on fast charge and mass transport of Li+ in the electrolyte. For liquid and polymer electrolytes with added lithium salts, Li+ couples to the counter-anion to form ionic clusters that produce inefficient Li+ transport and lead to Li dendrite formation. Quantification of Li+ transport in glycerol-salt electrolytes via NMR experiments and MD simulations reveals a surprising Li+-hopping mechanism. The Li+ transference number, measured by ion-specific electrophoretic NMR, can reach 0.7, and Li+ diffusion does not correlate with nearby ion motions, even at high salt concentration. Glycerol's high density of hydroxyl groups increases ion dissociation and slows anion diffusion, while the close proximity of hydroxyls and anions lowers local energy barriers, facilitating Li+ hopping. This system represents a bridge between liquid and inorganic solid electrolytes, thus motivating new molecular designs for liquid and polymer electrolytes to enable the uncorrelated Li+-hopping transport needed for fast-charging and all-solid-state batteries.

15.
Food Funct ; 14(6): 2807-2821, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36866667

RESUMEN

Lutein has many physiological functions like antioxidation, anti-cancer, and anti-inflammation, which presents good potential in the development of functional food for eye protection. However, the hydrophobicity and harsh environment factors during digestive absorption process will greatly reduce lutein bioavailability. In this study, Chlorella pyrenoidosa protein-chitosan complex stabilized Pickering emulsions were prepared, and lutein was encapsulated into corn oil droplets to increase its stability and bioavailability in gastrointestinal digestion. The interaction between Chlorella pyrenoidosa protein (CP) and chitosan (CS), and the effect of chitosan concentration on the emulsifying ability of the complex and emulsion stability were studied. With the increase of CS concentration from 0% to 0.8%, the emulsion droplet size obviously decreased, and the emulsion stability and viscosity increased significantly. In particular, when the concentration was 0.8%, the emulsion system was stable at 80 °C and 400 mM sodium chloride. After ultraviolet irradiation for 48 h, the retention rate of lutein encapsulated in Pickering emulsions was 54.33%, which was significantly higher than that (30.67%) of lutein dissolved in corn oil. The retention rate of lutein in Pickering emulsions stabilized by CP-CS complex was significantly higher than that in Pickering emulsions stabilized by CP only and corn oil after heating at 90 °C for 8 h. The results of simulated gastrointestinal digestion showed that the bioavailability of lutein encapsulated in Pickering emulsions stabilized by CP-CS complex reached 44.83%. These results explored the high-value utilization of Chlorella pyrenoidosa and provided new insights into the preparation of Pickering emulsions and the protection for lutein.


Asunto(s)
Quitosano , Chlorella , Emulsiones , Luteína , Aceite de Maíz , Tamaño de la Partícula
16.
J Physiol ; 601(11): 2139-2163, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36086823

RESUMEN

Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice. Specifically reducing dietary levels of histidine by 67% reduces the weight gain of young, lean male mice, reducing both adipose and lean mass without altering glucose metabolism, and rapidly reverses diet-induced obesity and hepatic steatosis in diet-induced obese male mice, increasing insulin sensitivity. This normalization of metabolic health was associated not with caloric restriction or increased activity, but with increased energy expenditure. Surprisingly, the effects of histidine restriction do not require the energy balance hormone Fgf21. Histidine restriction that was started in midlife promoted leanness and glucose tolerance in aged males but not females, but did not affect frailty or lifespan in either sex. Finally, we demonstrate that variation in dietary histidine levels helps to explain body mass index differences in humans. Overall, our findings demonstrate that dietary histidine is a key regulator of weight and body composition in male mice and in humans, and suggest that reducing dietary histidine may be a translatable option for the treatment of obesity. KEY POINTS: Protein restriction (PR) promotes metabolic health in rodents and humans and extends rodent lifespan. Restriction of specific individual essential amino acids can recapitulate the benefits of PR. Reduced histidine promotes leanness and increased energy expenditure in male mice. Reduced histidine does not extend the lifespan of mice when begun in midlife. Dietary levels of histidine are positively associated with body mass index in humans.


Asunto(s)
Histidina , Delgadez , Masculino , Humanos , Animales , Ratones , Anciano , Histidina/metabolismo , Ratones Endogámicos C57BL , Dieta , Obesidad/metabolismo , Proteínas , Metabolismo Energético
17.
RSC Adv ; 12(45): 29291-29299, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320760

RESUMEN

The structure and electronic properties of puckered GeS nanotubes have been investigated using first-principles density functional theory calculation. Our results show that both the armchair and zigzag GeS nanotubes are semiconductor materials with an adjustable band gap. The band gap increases gradually with increasing the tube diameter, and slowly converges to the monolayer limit. On the application of strain, the GeS nanotubes provide interesting strain-induced band gap variation. When the compressive strain reached 20%, zigzag GeS nanotubes are completely transformed into armchair GeS nanotubes. In addition, the elastic properties of the relatively stable armchair GeS nanotubes have been studied, the Young's modulus of the armchair (11, 11), (13, 13) and (15, 15) nanotubes were calculated to be 227.488 GPa, 211.888 GPa and 213.920 GPa, respectively. Our work confirms that compared with carbon nanotubes, two-dimensional materials with a puckered structure are easier to realize phase transition by stress.

18.
Proc Natl Acad Sci U S A ; 119(28): e2122840119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867762

RESUMEN

Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Células Renales , Cistina , Ferroptosis , Glutatión , Neoplasias Renales , Sistema de Transporte de Aminoácidos y+/metabolismo , Transporte Biológico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Cistina/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/deficiencia , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Terapia Molecular Dirigida , gamma-Glutamiltransferasa/metabolismo
19.
Foods ; 11(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35327298

RESUMEN

Pickering emulsions stabilized from natural sources are often used to load unstable bio-active ingredients, such as astaxanthin (AXT), to improve their functionality. In this study, AXT-loaded Pickering emulsions were successfully prepared by 2,2,6,6-tetramethy-1-piperidine oxide (TEMPO)-oxidized cellulose nanofibers (TOCNFs) from Undaria pinnatifida. The morphology analysis showed that TOCNFs had a high aspect ratio and dispersibility, which could effectively prevent the aggregation of oil droplets. The stable emulsion was obtained after exploring the influence of different factors (ultrasonic intensity, TOCNFs concentration, pH, and ionic strength). As expected, AXT-loaded Pickering emulsions showed good stability at 50 °C and 14 days of storage. The results of simulated in vitro digestion showed that the emulsions exhibited higher release of free fatty acids (FFAs) and bioaccessibility of AXT than those in sunflower oil. Hence, our work brought new insights into the preparation of Pickering emulsions and their applications in protection and sustained, controlled release of AXT.

20.
Cell Metab ; 34(2): 209-226.e5, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108511

RESUMEN

Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.


Asunto(s)
Dieta con Restricción de Proteínas , Resistencia a la Insulina , Animales , Metabolismo Energético/genética , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Antecedentes Genéticos , Resistencia a la Insulina/genética , Hígado/metabolismo , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA